768

时间:2014-05-04 20:04:37   收藏:0   阅读:270

$\bf命题:$设$A$为$n$阶实对称阵,$\alpha $为$n$维实向量,$\left( {\begin{array}{*{20}{c}}A&\alpha \\{{\alpha ^T}}&1\end{array}} \right)$为正定阵,证明:$A$正定且${\alpha ^T}{A^{ - 1}}\alpha < 1$

证明:作合同变换
\[{\rm{ }}\left( {\begin{array}{*{20}{c}}
E&0\\
{ - {\alpha ^T}{A^{ - 1}}}&E
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
A&\alpha \\
{{\alpha ^T}}&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
E&{ - {A^{ - 1}}\alpha }\\
0&E
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
A&0\\
0&{1 - {\alpha ^T}{A^{ - 1}}\alpha }
\end{array}} \right)\]
而合同变换保持正定性,故$A$正定且${\alpha ^T}{A^{ - 1}}\alpha < 1$

768,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!