982

时间:2014-05-04 20:12:18   收藏:0   阅读:365

$\bf命题1:$设$A$,$B$均为实对称半正定阵,则$tr\left( {AB} \right) \le tr\left( A \right) \cdot tr\left( B \right)$

证明:由$A$实对称知,存在正交阵$Q$,使得

A=Qdiag(λbubuko.com,布布扣1bubuko.com,布布扣,?,λbubuko.com,布布扣nbubuko.com,布布扣)Qbubuko.com,布布扣Tbubuko.com,布布扣bubuko.com,布布扣

其中${{\lambda _1}}$为$A$的最大特征值,则
tr(AB)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=tr(Qdiag(λbubuko.com,布布扣1bubuko.com,布布扣,?,λbubuko.com,布布扣nbubuko.com,布布扣)Qbubuko.com,布布扣Tbubuko.com,布布扣B)bubuko.com,布布扣=tr(diag(λbubuko.com,布布扣1bubuko.com,布布扣,?,λbubuko.com,布布扣nbubuko.com,布布扣)Qbubuko.com,布布扣Tbubuko.com,布布扣BQ)bubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣ibubuko.com,布布扣bbubuko.com,布布扣iibubuko.com,布布扣λbubuko.com,布布扣1bubuko.com,布布扣tr(B)bubuko.com,布布扣(bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣ibubuko.com,布布扣)?tr(B)=tr(A)?tr(B)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

其中${b_{11}}, \cdots ,{b_{nn}}$为${{Q^T}BQ}$的对角元

$\bf注:$矩阵的迹的性质$tr\left( {MN} \right) = tr\left( {NM} \right)$

982,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!