5656

时间:2014-05-04 20:16:15   收藏:0   阅读:261

$\bf命题1:$设$f(x)$是$\left[ {1, + \infty } \right)$上的非负单调减少函数,令

abubuko.com,布布扣nbubuko.com,布布扣=bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣f(k)?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dx,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

证明:数列$\left\{ {{a_n}} \right\}$收敛

证明:由$f(x)$在$\left[ {1, + \infty } \right)$上单调减少知,$f(x)$在$\left[ {n,n + 1} \right]$上可积,且

f(n+1)bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dxf(n),nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

从而可知

abubuko.com,布布扣n+1bubuko.com,布布扣?abubuko.com,布布扣nbubuko.com,布布扣=f(n+1)?bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dx0bubuko.com,布布扣

即$\left\{ {{a_n}} \right\}$单调减少;而又由$\eqref {eq1}$知

abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣f(k)?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dxbubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣k+1bubuko.com,布布扣kbubuko.com,布布扣f(x)dx?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dxbubuko.com,布布扣=bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dxf(n+1)0 bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

即$\left\{ {{a_n}} \right\}$有上界,故由$\eqref {eq2}$,$\eqref {eq3}$及单调有界原理知数列$\left\{ {{a_n}} \right\}$收敛

5656,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!