46

时间:2014-05-04 20:20:38   收藏:0   阅读:337

$\bf命题1:$任意方阵$A$均可分解为可逆阵$B$与幂等阵$C$之积

证明:设$r\left( A \right) = r$,则存在可逆阵$P,Q$,使得

PAQ=(Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣

从而可知
Abubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=Pbubuko.com,布布扣?1bubuko.com,布布扣(Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣)Qbubuko.com,布布扣?1bubuko.com,布布扣bubuko.com,布布扣=Pbubuko.com,布布扣?1bubuko.com,布布扣Qbubuko.com,布布扣?1bubuko.com,布布扣.Q(Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣)Qbubuko.com,布布扣?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

取$B = {P^{ - 1}}{Q^{ - 1}}$,$C = Q\left( {
Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
} \right){Q^{ - 1}}$,即证

46,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!