9

时间:2014-05-04 20:34:28   收藏:0   阅读:247

$\bf命题1:$任何实数都是某个有理数列的极限

证明:设$A$为实数,若$A$为有理数,则令

abubuko.com,布布扣nbubuko.com,布布扣=A,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

即可,若$A$为无理数,则令
abubuko.com,布布扣nbubuko.com,布布扣=[nA]bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

其中${\left[ x \right]}$表示不超过$x$的最大整数,因此${a_n}$都是有理数.而$A$为无理数,则
nA?1<[nA]<nA,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣
A?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣<abubuko.com,布布扣nbubuko.com,布布扣<A,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣
从而由夹逼原理即证

9,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!