6
时间:2014-05-04 20:40:45
收藏:0
阅读:382
$\bf命题1:$设$\left\{ {{a_n}} \right\}$为单调增加的数列,则$\lim \limits_{n \to \infty } {a_n} = \mathop {Sup}\limits_{k \ge 1} \left\{ {{a_k}} \right\}$
证明:记M = \mathop {Sup}\limits_{k \ge 1} \left\{ {{a_k}} \right\}
$\left( 1 \right)$当$M < + \infty $时,由上确界的定义知,对任给$\varepsilon > 0$,存在${a_N}$,使得
M - \varepsilon < {a_N} \le M
由于$\left\{ {{a_n}} \right\}$为单调增加数列,则当$n > N$时,有
M - \varepsilon < {a_N} \le {a_n} \le M < M + \varepsilon
从而由数列极限的定义即证
$\left( 2 \right)$当$M = + \infty $时,由上确界的定义知,对任给$\varepsilon >
0$,存在${a_N}$,使得
{a_N} > \varepsilon
由于$\left\{ {{a_n}} \right\}$为单调增加数列,则当$n > N$时,有
{a_n} \ge {a_N} > \varepsilon
从而由数列极限的定义即证
评论(0)