如何调用sklearn模块做交叉验证

时间:2015-07-24 22:32:53   收藏:0   阅读:10091

终于搞明白了如何用sklearn做交叉验证!!!

一般在建立完模型之后,我们要预测模型的好坏,为了试验的可靠性(排除一次测试的偶然性)我们要进行多次测试验证,这时就要用交叉验证。

sklearn中的sklearn.cross_validation.cross_val_score函数已经帮我们做好了。

直接调用就可以了。

无论是做回归还是做分类,都可以用这个函数。

具体用法:

from sklearn.cross_validation import cross_val_score

metric = cross_val_score(clf,X,y,cv=5,scoring=‘ ‘).mean()

clf是分类器

其中scoring可以是:

[‘accuracy‘, ‘adjusted_rand_score‘, ‘average_precision‘, ‘f1‘, ‘f1_macro‘, ‘f1_micro‘, ‘f1_samples‘, ‘f1_weighted‘, ‘log_loss‘, ‘mean_absolute_error‘, ‘mean_squared_error‘, ‘median_absolute_error‘, ‘precision‘, ‘precision_macro‘, ‘precision_micro‘, ‘precision_samples‘, ‘precision_weighted‘, ‘r2‘, ‘recall‘, ‘recall_macro‘, ‘recall_micro‘, ‘recall_samples‘, ‘recall_weighted‘, ‘roc_auc‘]

就这么简单!

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!