uva 618 - Doing Windows(暴力+数学)
时间:2014-05-02 23:28:48
收藏:0
阅读:751
题目大意:给出电脑桌面的大小W和H,现在在桌面上有4个窗口,给出窗口的初始大小,问说能不能通过调整各个窗口的大小(长宽比例不能变)使得4个屏幕刚好占满整个屏幕,并且互相不覆盖。
解题思路:其实可以直接暴力出所有情况,不过细节比较多,而且要考虑所有的细节。
我的做法的是先将4个窗口缩小至最小的状态,然后枚举左下角的窗口,
有四种可能
蓝色部分为另外枚举的窗口,3,4种情况要分别保证说长、宽相等,然后S部分就是子问题。
所以用一个二进制数来表示窗口被使用的情况,然后如果只剩一块,看随后一块和剩下的矩形长宽是否成比例。
#include <cstdio> #include <cstring> const int N = 5; typedef long long ll; inline ll gcd (ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } inline int bitCount(int x) { return x == 0 ? 0 : bitCount(x/2) + (x&1); } struct state { ll r, c; state (ll r = 0, ll c = 0) { this->r = r; this->c = c; } void get() { scanf("%lld%lld", &r, &c); ll d = gcd(r, c); r /= d; c /= d; } }w[N]; bool solve (ll R, ll C, int s); inline bool cmp (state a, state b) { return a.r * b.c == b.r * a.c; } void cat (state u, state v, state& a, state& b, int s) { ll p, q; if (s == 0) { ll d = gcd(u.r, v.r); p = v.r / d; q = u.r / d; } else { ll d = gcd(u.c, v.c); p = v.c / d; q = u.c / d; } a.r = u.r * p; a.c = u.c * p; b.r = v.r * q; b.c = v.c * q; } bool judge(ll R, ll C, state v, int s, int sign) { if (sign == 0) { if (R % v.r) return false; ll k = R / v.r; C -= v.c * k; if (C <= 0) return false; } else { if (C % v.c) return false; ll k = C / v.c; R -= v.r * k; if (R <= 0) return false; } return solve(R, C, s); } bool judgeTow(ll R, ll C, state v, int s) { for (int i = 0; i < 4; i++) { if ((s&(1<<i)) == 0) continue; state add, a, b; for (int j = 0; j < 2; j++) { cat(v, w[i], a, b, j); if (j == 0) { add.r = a.r; add.c = a.c + b.c; } else { add.r = a.r + b.r; add.c = a.c; } if (judge(R, C, add, s-(1<<i), 1-j)) return true; } } return false; } bool solve (ll R, ll C, int s) { int cnt = bitCount(s); if (cnt == 1) { for (int i = 0; i < 4; i++) if (s&(1<<i)) return cmp(state(R, C), w[i]); } for (int i = 0; i < 4; i++) { if ((s&(1<<i)) == 0) continue; for (int j = 0; j < 2; j++) { if (judge(R, C, w[i], s-(1<<i), j)) return true; } if (cnt > 2 && judgeTow(R, C, w[i], s-(1<<i))) return true; } return false; } int main () { int cas = 1; ll R, C; while (scanf("%lld%lld", &R, &C) == 2 && R + C) { for (int i = 0; i < 4; i++) w[i].get(); printf("Set %d: %s\n", cas++, solve(R, C, 15) ? "Yes" : "No"); } return 0; }
评论(0)