积分题05012014
时间:2014-05-02 02:14:53
收藏:0
阅读:248
计算
\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx.}
解:留数理论的一种解答:
注意到
\int_0^\infty {\frac{{\cos \left( {mx}
\right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}\int_{ - \infty }^\infty
{\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} .
若令
\begin{align*}F\left( m \right) &= \int_{
- \infty }^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} +
1}}dx} = \int_{ - \infty }^\infty {\frac{{\cos \left( {mx}
\right)}}{{\left( {{x^2} - x + 1} \right)\left( {{x^2} + x + 1}
\right)}}dx}\\&= \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x
+ 1} \right)\cos \left( {mx} \right)}}{{{x^2} + x + 1}}dx} -
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {x - 1} \right)\cos
\left( {mx} \right)}}{{{x^2} - x + 1}}dx}.\end{align*}
\begin{align*} \Rightarrow F‘\left( m \right)
&= - \frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} +
x} \right)\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} +
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{\left( {{x^2} - x}
\right)sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx} \\&=
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{\sin \left( {mx}
\right)}}{{{x^2} + x + 1}}dx} - \frac{1}{2}\int_{ - \infty }^\infty
{\frac{{sin\left( {mx} \right)}}{{{x^2} - x + 1}}dx}\end{align*}
再令
I = \frac{1}{2}\int_{ - \infty }^\infty
{\frac{{\sin \left( {mx} \right)}}{{{x^2} + x + 1}}dx} -
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{sin\left( {mx}
\right)}}{{{x^2} - x + 1}}dx} ,T = \frac{1}{2}\int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} -
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx}
\right)}}}}{{{x^2} - x + 1}}dx} .
则
I = {\mathop{\rm Im}\nolimits} T.
即\displaystyle T
的虚部为\displaystyle I
.因此,为了计算积分\displaystyle I
,只需求出积分
\int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ -
\infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx}
即可.先求
\int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} .
求得辅助函数
\frac{{P\left( z \right)}}{{Q\left( z
\right)}}{e^{i\left( {mz} \right)}} = \frac{{{e^{i\left( {mz} \right)}}}}{{{z^2}
+ z + 1}}
在上半平面的奇点只有点\displaystyle \alpha =
- \frac{1}{2} + \frac{{\sqrt 3 }}{2}i
(另一个奇点为\displaystyle \beta = -
\frac{1}{2} - \frac{{\sqrt 3 }}{2}i
).于是我们有
\int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} = 2\pi i
\cdot {\mathop{\rm Re}\nolimits} s\left( {\frac{{{e^{i\left( {mz}
\right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i}
\right).
由于
{\mathop{\rm Re}\nolimits} s\left(
{\frac{{{e^{i\left( {mz} \right)}}}}{{{z^2} + z + 1}}, - \frac{1}{2} +
\frac{{\sqrt 3 }}{2}i} \right) = \mathop {\lim }\limits_{z \to \alpha } \left(
{z - \alpha } \right)\frac{{{e^{i\left( {mz} \right)}}}}{{\left( {z - \alpha }
\right)\left( {z - \beta } \right)}} = \frac{{{e^{ - \frac{{\sqrt 3 }}{2}m -
\frac{1}{2}im}}}}{{\sqrt 3 i}}.
\Rightarrow \int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} =
\frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m - \frac{1}{2}im}} =
\frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2}
- i\sin \frac{m}{2}} \right).
同理亦得
\int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx} =
\frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2}
+ i\sin \frac{m}{2}} \right).
\Rightarrow \int_{ - \infty }^\infty
{\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} - \int_{ -
\infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x + 1}}dx}
= - \frac{{4\pi i}}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin
\frac{m}{2}
故
F‘\left( m \right) = I = {\mathop{\rm
Im}\nolimits} T = {\mathop{\rm Im}\nolimits} \frac{1}{2}\left( {\int_{ - \infty
}^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} + x + 1}}dx} -
\int_{ - \infty }^\infty {\frac{{{e^{i\left( {mx} \right)}}}}{{{x^2} - x +
1}}dx} } \right) = - \frac{{2\pi }}{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3
}}{2}m}}\sin \frac{m}{2}.
\Rightarrow F\left( m \right) = -
\frac{{2\pi }}{{\sqrt 3 }} \cdot \left[ {\frac{{{e^{ - \frac{{\sqrt 3
}}{2}m}}}}{2}\left( { - \cos \frac{m}{2} - \sqrt 3 \sin \frac{m}{2}} \right)}
\right] = \frac{\pi }{{\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left(
{\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right).
\begin{align*} \Rightarrow \int_0^\infty
{\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} + 1}}dx} &=
\frac{1}{2}\int_{ - \infty }^\infty {\frac{{\cos \left( {mx}
\right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{1}{2}F\left( m \right) \\&=
\frac{\pi }{{2\sqrt 3 }} \cdot {e^{ - \frac{{\sqrt 3 }}{2}m}}\left( {\cos
\frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) = \frac{\pi }{{\sqrt 3 }}{e^{ -
\frac{{\sqrt 3 }}{2}m}}\sin \left( {\frac{m}{2} + \frac{\pi }{6}}
\right).\end{align*}
另解:由Fourier变换公式,我们有
\begin{align*}{e^{ - \frac{{\sqrt 3
}}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}} \right) &=
\frac{2}{\pi }\int_0^\infty {\cos \left( {mx} \right)dx} \int_0^\infty
{{e^{ - \frac{{\sqrt 3 }}{2}u}}\left( {\cos \frac{u}{2} + \sqrt 3 \sin
\frac{u}{2}} \right)\cos \left( {ux} \right)du} \\&= \frac{{2\sqrt 3
}}{\pi }\int_0^\infty {\frac{{\cos \left( {mx} \right)}}{{{x^4} + {x^2} +
1}}dx}.\end{align*}
立得
\int_0^\infty {\frac{{\cos \left( {mx}
\right)}}{{{x^4} + {x^2} + 1}}dx} = \frac{\pi }{{2\sqrt 3 }}{e^{ -
\frac{{\sqrt 3 }}{2}m}}\left( {\cos \frac{m}{2} + \sqrt 3 \sin \frac{m}{2}}
\right){\rm{ = }}\frac{\pi }{{\sqrt 3 }}{e^{ - \frac{{\sqrt 3 }}{2}m}}\sin
\left( {\frac{m}{2} + \frac{\pi }{6}} \right).
评论(0)