归并排序 & 快速排序

时间:2015-05-11 14:26:12   收藏:0   阅读:139

归并排序

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

 

归并过程为:

比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;

否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。

归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

 

================

1、归并排序

 ================

快速排序

快速排序(Quicksort)是对冒泡排序的一种改进。

 

基本思想:--二分查找

  通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

 

技术分享快速排序图

1. 设要排序的数组是A[0]……A[N-1]。首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面这个过程称为一趟快速排序

2. 快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

 

================

2、快速排序

 

================

PS:

递归

递归算法一般用于解决三类问题:
(1)数据的定义是按递归定义的。(Fibonacci函数
 
(2)问题解法按递归算法实现。
这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。
 
(3)数据的结构形式是按递归定义的。
如二叉树、广义表等,由于结构本身固有的递归特性,则它们的操作可递归地描述。
 
递归的缺点:
  递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。
 
递归典型问题: 梵塔问题(汉诺塔问题
  已知有三根针分别用A, B, C表示,在A中从上到下依次放n个从小到大的盘子,现要求把所有的盘子
从A针全部移到B针,移动规则是:可以使用C临时存放盘子,每次只能移动一块盘子,而且每根针上
不能出现大盘压小盘,找出移动次数最小的方案.

 

================

PS:

[ 每日一句 

There’s a plan to make all of this right.

 

[ 每天一首英文歌 ]

" Call me maybe " - Carly Rae Jepsen

================

 

|-> GitHub: SpongeBob-GitHub

|--> Copyright (c) 2015 Bing Ma.

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!