hdu---1024Max Sum Plus Plus(动态规划)
时间:2014-06-02 14:59:54
收藏:0
阅读:247
Max Sum Plus Plus
Time Limit: 2000/1000 MS
(Java/Others) Memory Limit: 65536/32768 K
(Java/Others)
Total Submission(s): 15898 Accepted
Submission(s): 5171
Problem Description
Now I think you have got an AC in Ignatius.L‘s "Max
Sum" problem. To be a brave ACMer, we always challenge ourselves to more
difficult problems. Now you are faced with a more difficult
problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n,
followed by n integers S1, S2,
S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one
line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is
recommended.
Author
JGShining(极光炫影)
代码:

1 #include<iostream> 2 #include<string.h> 3 #include<stdio.h> 4 using namespace std; 5 int a[1000001],dp[1000001],max1[1000001]; 6 int max(int x,int y){ 7 return x>y?x:y; 8 } 9 int main(){ 10 int i,j,n,m,temp; 11 while(scanf("%d%d",&m,&n)!=EOF) 12 { 13 dp[0]=0; 14 for(i=1;i<=n;i++) 15 { 16 scanf("%d",&a[i]); 17 dp[i]=0; 18 max1[i]=0; 19 } 20 max1[0]=0; 21 for(i=1;i<=m;i++){ 22 temp=-0x3f3f3f3f; 23 for(j=i;j<=n;j++){ 24 dp[j]=max(dp[j-1]+a[j],max1[j-1]+a[j]); 25 max1[j-1]=temp; 26 temp=max(temp,dp[j]); 27 } 28 } 29 printf("%d\n",temp); 30 } 31 return 0; 32 }
评论(0)