C++ --- 基于std::thread实现的线程池

时间:2021-07-05 18:38:48   收藏:0   阅读:0
#ifndef THREAD_POOL_H
#define THREAD_POOL_H

#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>

class ThreadPool {
public:
    ThreadPool(size_t);
    template<class F, class... Args>
    auto enqueue(F&& f, Args&&... args)
        -> std::future<typename std::result_of<F(Args...)>::type>;
    ~ThreadPool();
//    int GetFreeThreadNum(){return freeThreadNum;}
    int num;//向线程池push的任务总数,没有加锁

private:
    // need to keep track of threads so we can join them
    std::vector< std::thread > workers;
    // the task queue
    std::queue< std::function<void()> > tasks;
    
    // synchronization
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
//    std::atomic<int> freeThreadNum;//线程池空闲线程数量
};
 
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
    :   stop(false)
    ,num(0)
{
//    freeThreadNum = threads;
    for(size_t i = 0;i<threads;++i)
        workers.emplace_back(
            [this]
            {
                for(;;)
                {
                    std::function<void()> task;

                    {
                        std::unique_lock<std::mutex> lock(this->queue_mutex);
                        this->condition.wait(lock,
                            [this]{ return this->stop || !this->tasks.empty(); });//没有要执行任务的时候,线程沉睡(不会浪费资源)

                        if(this->stop && this->tasks.empty())
                            return;

                        task = std::move(this->tasks.front());
                        this->tasks.pop();
                    }

//                    freeThreadNum--;
                    task();
//                    freeThreadNum++;
                }
            }
        );
}

// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args) 
    -> std::future<typename std::result_of<F(Args...)>::type>
{
    using return_type = typename std::result_of<F(Args...)>::type;

    auto task = std::make_shared< std::packaged_task<return_type()> >(
            std::bind(std::forward<F>(f), std::forward<Args>(args)...)
        );
        
    std::future<return_type> res = task->get_future();
    {
        std::unique_lock<std::mutex> lock(queue_mutex);

        // don‘t allow enqueueing after stopping the pool
        if(stop)
            throw std::runtime_error("enqueue on stopped ThreadPool");

        tasks.emplace([task](){ (*task)(); });
    }
    condition.notify_one();
//    num++;
    return res;
}

// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
    {
        std::unique_lock<std::mutex> lock(queue_mutex);
        stop = true;
    }
    condition.notify_all();
    for(std::thread &worker: workers)
        worker.join();
}

#endif

说明:

ThreadPool(size_t threadsNum); 构造函数,通过threadsNum指定线程池的大小。
auto enqueue(F&& f, Args&&... args); 需要放到线程池中运行的函数,和参数。
~ThreadPool(); 析构函数,在线程池对象销毁的时候,如果线程池中还有未执行的任务,会依次唤醒,并执行完成,最后结束线程池中所有线程。

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!