VGGNet

时间:2018-06-17 10:53:14   收藏:0   阅读:1734

VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和 GoogleDeepMind 公司的研究员一起研发的的深度卷积神经网络。

在ImageNet大型视觉识别挑战 ILSVRC 2014 中定位任务第一名和分类任务第二名(第一名是 GoogLeNet ,也是同年提出的)。

VGGNet 反复堆叠 3x3 小型卷积核和 2x2 最大池化层, 成功构筑16~19 层深卷积神经网络。

其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且 VGGNet 对其他数据集具有很好的泛化能力。

 技术分享图片

 

VGG16

卷积层:13层  3*3

全连接层:3层

Softmax 输出层

池化层:max-pooling(最大化池)2*2

所有隐层的激活单元都采用ReLU函数。

 技术分享图片

技术分享图片

 

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!