【不等式】何承天

时间:2014-05-09 09:54:33   收藏:0   阅读:288

何承天不等式:

abubuko.com,布布扣bbubuko.com,布布扣bubuko.com,布布扣ma+ndbubuko.com,布布扣mb+ncbubuko.com,布布扣bubuko.com,布布扣dbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

其中$a,b,c,d,m,n \in \mathbb{R}$.

 

Proof:这是一个有重要应用的不等式(变分迭代算法中)

先证明一个简单情况$m=n=1$时,设 $H(m,n)=\frac{ma+nd}{mb+nc}$

H(1,1)=b+dbubuko.com,布布扣a+cbubuko.com,布布扣bubuko.com,布布扣=bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣1+d/bbubuko.com,布布扣1+c/abubuko.com,布布扣bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

同理可得$H(1,1)\geq \frac{d}{c}$.

由原式

mbbubuko.com,布布扣nabubuko.com,布布扣bubuko.com,布布扣ndbubuko.com,布布扣ncbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

abubuko.com,布布扣bbubuko.com,布布扣bubuko.com,布布扣ma+ndbubuko.com,布布扣mb+ncbubuko.com,布布扣bubuko.com,布布扣dbubuko.com,布布扣cbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

【不等式】何承天,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!