Java Synchronization

时间:2014-04-29 16:31:18   收藏:0   阅读:668

 Intrinsic Locks and Synchronization

  Synchronization is built around an internal entity known as the intrinsic lock or monitor lock. (The API specification often refers to

this entity simply as a "monitor.") Intrinsic locks play a role in both aspects of synchronization: enforcing exclusive access to an object‘s

state and establishing happens-before relationships that are essential to visibility.

  Every object has an intrinsic lock associated with it. By convention, a thread that needs exclusive and consistent access to an object‘s

fields has to acquire the object‘s intrinsic lock before accessing them, and then release the intrinsic lock when it‘s done with them. A thread

is said to own the intrinsic lock between the time it has acquired the lock and released the lock. As long as a thread owns an intrinsic lock,

no other thread can acquire the same lock. The other thread will block when it attempts to acquire the lock.

 When a thread releases an intrinsic lock, a happens-before relationship is established between that action and any subsequent acquistion

of the same lock.

Locks In Synchronized Methods

  When a thread invokes a synchronized method, it automatically acquires the intrinsic lock for that method‘s object and releases it when

the method returns. The lock release occurs even if the return was caused by an uncaught exception.

  You might wonder what happens when a static synchronized method is invoked, since a static method is associated with a class, not an

object. In this case, the thread acquires the intrinsic lock for the Class object associated with the class. Thus access to class‘s static fields is

controlled by a lock that‘s distinct from the lock for any instance of the class.

  因为静态方法与类相关,与实例无关。因此,static synchronized method 将获得类的锁。

Synchronized Statements

  Another way to create synchronized code is with synchronized statements. Unlike synchronized methods, synchronized statements

must specify the object that provides the intrinsic lock:

public void addName(String name) {
    synchronized(this) {
        lastName = name;
        nameCount++;
    }
    nameList.add(name);
}

  In this example, the addName method needs to synchronize changes to lastName and nameCount, but also needs to avoid synchronizing

invocations of other objects‘ methods. (Invoking other objects‘ methods from synchronized code can create problems that are described

in the section on Liveness.) Without synchronized statements, there would have to be a separate, unsynchronized method for the sole

purpose of invoking nameList.add.

  Synchronized statements are also useful for improving concurrency with fine-grained synchronization. Suppose, for example, class 

MsLunch has two instance fields, c1 and c2, that are never used together. All updates of these fields must be synchronized, but there‘s

no reason to prevent an update of c1 from being interleaved with an update of c2 — and doing so reduces concurrency by creating

unnecessary blocking. Instead of using synchronized methods or otherwise using the lock associated with this, we create two objects

solely to provide locks.

public class MsLunch {
    private long c1 = 0;
    private long c2 = 0;
    private Object lock1 = new Object();
    private Object lock2 = new Object();

    public void inc1() {
        synchronized(lock1) {
            c1++;
        }
    }

    public void inc2() {
        synchronized(lock2) {
            c2++;
        }
    }
}

  Use this idiom with extreme care. You must be absolutely sure that it really is safe to interleave access of the affected fields.

Reentrant Synchronization

  Recall that a thread cannot acquire a lock owned by another thread. But a thread can acquire a lock that it already owns. Allowing a

thread to acquire the same lock more than once enables reentrant synchronization. This describes a situation where synchronized code,

directly or indirectly, invokes a method that also contains synchronized code, and both sets of code use the same lock. Without reentrant

synchronization, synchronized code would have to take many additional precautions to avoid having a thread cause itself to block.

 

相关单词:

interleave - 交错,交叉存取的,隔行扫描的

sole - 唯一

Java Synchronization,码迷,mamicode.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!