服务器主逻辑代码的重构
不知道前主程是处于什么目的,总之我接手这套程序的时候,出现了超级多的问题,也发现了超级多的问题。
比如说吧,接受网络消息逻辑是线程独立的,而发送消息给客户端缺阻塞在了逻辑线程里面;原本可以放在一个进程里面处理的逻辑,却分散在了四个进程里面去处理,导致我完成一个功能,大部分时间要话费了进程之间的玩家信息的同步上面,在我无法忍受的情况下,我终于是用NIO将网络底层从新写了,而且将四个进程合并,但是在很多逻辑上还是尽量保持了和原逻辑处理的兼容!
先说说这个重构的底层吧!
我们看下最重要的ClientHandle类,主要处理每个连接的收发数据的!
1
2
3
4
5
6
7
8
9
10
11
12
13 |
public class ClientHandle implements
ISession { public
final static int RW_BUFFER_SIZE = 1024 ; private
SocketChannel socket = null ; private
java.nio.ByteBuffer reader = java.nio.ByteBuffer.allocate(RW_BUFFER_SIZE); private
java.nio.ByteBuffer writer = java.nio.ByteBuffer.allocate( 4 *RW_BUFFER_SIZE); BlockingQueue<ByteBuffer> writeQueue = new
LinkedBlockingQueue<ByteBuffer>(); private
IPlayer player = null ; private
boolean active = false ; |
包含SocketChannel对象不用说了,reader和writer是用来做消息收发的缓冲的,因为服务器广播的压力会大一些,所以将writer的大小设置为reader的4倍,当然这个可以调整。
writeQueue是用来存储需要发送给客户端的ByteBuffer,每次在这个链接可以写数据的时候,就将writeQueue里面存储的数据转移到writer中,并且一次发送,减少了writer的系统调用次数。ByteBuffer的结构简单说下,不同于java.nio.ByteBuffer,而是自己封装的一个消息解析器,给出源代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639 |
package
NetBase; /** * 类说明:字节缓存类,字节操作高位在前,低位在后 * * @version 1.0 * @author fxxxysh <hanshuang@linekong.com> */ public
class ByteBuffer { /* static fields */ /** 默认的初始容量大小 */ public
static final int CAPACITY = 32 ; /** 默认的动态数据或文字的最大长度,400k */ public
static final int MAX_DATA_LENGTH = 400
* 1024 ; /* fields */ /** 字节数组 */ byte [] bytes; /** 字节缓存的长度 */ int
top; /** 字节缓存的偏移量 */ int
offset; /* constructors */ /** 按默认的大小构造一个字节缓存对象 */ public
ByteBuffer() { this (CAPACITY); } /** 按指定的大小构造一个字节缓存对象 */ public
ByteBuffer( int
capacity) { if
(capacity < 1 ) throw
new IllegalArgumentException(getClass().getName() + " <init>, invalid capatity:"
+ capacity); bytes = new
byte [capacity]; top = 0 ; offset = 0 ; } /** 按指定的字节数组构造一个字节缓存对象 */ public
ByteBuffer( byte [] data) { if
(data == null ) throw
new IllegalArgumentException(getClass().getName() + " <init>, null data" ); bytes = data; top = data.length; offset = 0 ; } /** 按指定的字节数组构造一个字节缓存对象 */ public
ByteBuffer( byte [] data, int
index, int
length) { if
(data == null ) throw
new IllegalArgumentException(getClass().getName() + " <init>, null data" ); if
(index < 0
|| index > data.length) throw
new IllegalArgumentException(getClass().getName() + " <init>, invalid index:"
+ index); if
(length < 0
|| data.length < index + length) throw
new IllegalArgumentException(getClass().getName() + " <init>, invalid length:"
+ length); bytes = data; top = index + length; offset = index; } /* properties */ /** 得到字节缓存的容积 */ public
int capacity() { return
bytes.length; } /** 设置字节缓存的容积,只能扩大容积 */ public
void setCapacity( int
len) { int
c = bytes.length; if
(len <= c) return ; for
(; c < len; c = (c << 1 ) + 1 ) ; byte [] temp = new
byte [c]; System.arraycopy(bytes, 0 , temp, 0 , top); bytes = temp; } /** 得到字节缓存的长度 */ public
int top() { return
top; } /** 设置字节缓存的长度 */ public
void setTop( int
top) { if
(top < offset) throw
new IllegalArgumentException( this
+ " setTop, invalid top:" + top); if
(top > bytes.length) setCapacity(top); this .top = top; } /** 得到字节缓存的偏移量 */ public
int offset() { return
offset; } /** 设置字节缓存的偏移量 */ public
void setOffset( int
offset) { if
(offset < 0
|| offset > top) throw
new IllegalArgumentException( this + " setOffset, invalid offset:"
+ offset); this .offset = offset; } /** 得到字节缓存的使用长度 */ public
int length() { return
top - offset; } /** 得到字节缓存的字节数组,一般使用toArray()方法 */ public
byte [] getByteArray() { return
bytes; } /* methods */ /* byte methods */ /** 得到指定偏移位置的字节 */ public
byte read( int
pos) { return
bytes[pos]; } /** 设置指定偏移位置的字节 */ public
void write( int
b, int pos) { bytes[pos] = ( byte ) b; } /* read methods */ /** * 按当前偏移位置读入指定的字节数组 * * @param data * 指定的字节数组 * @param pos * 指定的字节数组的起始位置 * @param len * 读入的长度 */ public
void read( byte [] data, int
pos, int
len) { System.arraycopy(bytes, offset, data, pos, len); offset += len; } /** 读出一个布尔值 */ public
boolean readBoolean() { return
(bytes[offset++] != 0 ); } /** 读出一个字节 */ public
byte readByte() { return
bytes[offset++]; } /** 读出一个无符号字节 */ public
int readUnsignedByte() { return
bytes[offset++] & 0xff ; } /** 读出一个字符 */ public
char readChar() { return
( char ) readUnsignedShort(); } /** 读出一个短整型数值 */ public
short readShort() { return
( short ) readUnsignedShort(); } /** 读出一个无符号的短整型数值 */ public
int readUnsignedShort() { int
pos = offset; offset += 2 ; return
(bytes[pos + 1 ] & 0xff ) + ((bytes[pos] & 0xff ) << 8 ); } /** 读出一个整型数值 */ public
int readInt() { int
pos = offset; offset += 4 ; return
(bytes[pos + 3 ] & 0xff ) + ((bytes[pos + 2 ] & 0xff ) << 8 ) + ((bytes[pos + 1 ] & 0xff ) << 16 ) + ((bytes[pos] & 0xff ) << 24 ); } /** 读出一个浮点数值 */ public
float readFloat() { return
Float.intBitsToFloat(readInt()); } /** 读出一个长整型数值 */ public
long readLong() { int
pos = offset; offset += 8 ; return
(bytes[pos + 7 ] & 0xffL) + ((bytes[pos + 6 ] & 0xffL) << 8 ) + ((bytes[pos + 5 ] & 0xffL) << 16 ) + ((bytes[pos + 4 ] & 0xffL) << 24 ) + ((bytes[pos + 3 ] & 0xffL) << 32 ) + ((bytes[pos + 2 ] & 0xffL) << 40 ) + ((bytes[pos + 1 ] & 0xffL) << 48 ) + ((bytes[pos] & 0xffL) << 56 ); } /** 读出一个双浮点数值 */ public
double readDouble() { return
Double.longBitsToDouble(readLong()); } /** * 读出动态长度, 数据大小采用动态长度,整数类型下,最大为512M 1xxx,xxxx表示(0~0x80) 0~128B * 01xx,xxxx,xxxx,xxxx表示(0~0x4000) 0~16K * 001x,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx,xxxx表示(0~0x20000000) 0~512M */ public
int readLength() { int
n = bytes[offset] & 0xff ; if
(n >= 0x80 ) { offset++; return
n - 0x80 ; } else
if (n >= 0x40 ) return
readUnsignedShort() - 0x4000 ; else
if (n >= 0x20 ) return
readInt() - 0x20000000 ; else throw
new IllegalArgumentException( this + " readLength, invalid number:"
+ n); } /** 读出一个指定长度的字节数组,可以为null */ public
byte [] readData() { int
len = readLength() - 1 ; if
(len < 0 ) return
null ; if
(len > MAX_DATA_LENGTH) throw
new IllegalArgumentException( this + " readData, data overflow:"
+ len); byte [] data = new
byte [len]; read(data, 0 , len); return
data; } /** 读出一个短字节数组,长度不超过254 */ public
byte [] readShortData() { int
len = readUnsignedByte(); if
(len == 255 ) return
null ; byte [] data = new
byte [len]; if
(len != 0 ) read(data, 0 , len); return
data; } /** 读出一个指定长度的字符串 */ public
String readString( int
len) { byte [] data = new
byte [len]; if
(len == 0 ) return
"" ; read(data, 0 , len); return
new String(data); } /** 读出一个短字符串,长度不超过254 */ public
String readShortString() { int
len = readUnsignedByte(); if
(len == 255 ) return
null ; return
readString(len); } /** 读出一个字符串,长度不超过65534 */ public
String readString() { int
len = readUnsignedShort(); if
(len == 65535 ) return
null ; return
readString(len); } /** 读出一个指定长度和编码类型的字符串 */ public
String readUTF(String charsetName) { int
len = readLength() - 1 ; if
(len < 0 ) return
null ; if
(len > MAX_DATA_LENGTH) throw
new IllegalArgumentException( this + " readUTF, data overflow:"
+ len); byte [] data = new
byte [len]; read(data, 0 , len); if
(charsetName == null ) return
new String(data); try { return
new String(data, charsetName); } catch
(Exception e) { throw
new IllegalArgumentException( this + " readUTF, invalid charsetName:"
+ charsetName); } } /** 读出一个指定长度的utf字符串 */ public
String readUTF() { int
len = readLength() - 1 ; if
(len < 0 ) return
null ; if
(len == 0 ) return
"" ; if
(len > MAX_DATA_LENGTH) throw
new IllegalArgumentException( this + " readUTF, data overflow:"
+ len); StringBuffer sb = new
StringBuffer(len); int
pos = ByteKit.readUTF(bytes, offset, len, sb); if
(pos > 0 ) throw
new IllegalArgumentException( this + " readUTF, format err, len="
+ len + ", pos:"
+ pos); offset += len; return
sb.toString(); } /* write methods */ /** * 写入指定字节数组 * * @param data * 指定的字节数组 * @param pos * 指定的字节数组的起始位置 * @param len * 写入的长度 */ public
void write( byte [] data, int
pos, int
len) { if
(bytes.length < top + len) setCapacity(top + len); System.arraycopy(data, pos, bytes, top, len); top += len; } /** 写入一个布尔值 */ public
void writeBoolean( boolean
b) { if
(bytes.length < top + 1 ) setCapacity(top + CAPACITY); bytes[top++] = ( byte ) (b ? 1
: 0 ); } /** 写入一个字节 */ public
void writeByte( int
b) { if
(bytes.length < top + 1 ) setCapacity(top + CAPACITY); bytes[top++] = ( byte ) b; } /** 写入一个字符 */ public
void writeChar( int
c) { writeShort(c); } /** 写入一个短整型数值 */ public
void writeShort( int
s) { int
pos = top; if
(bytes.length < pos + 2 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) (s >>> 8 ); bytes[pos + 1 ] = ( byte ) s; top += 2 ; } /** 在指定位置写入一个短整型数值,length不变 */ public
void writeShort( int
s, int pos) { if
(bytes.length < pos + 2 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) (s >>> 8 ); bytes[pos + 1 ] = ( byte ) s; } /** 写入一个整型数值 */ public
void writeInt( int
i) { int
pos = top; if
(bytes.length < pos + 4 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) (i >>> 24 ); bytes[pos + 1 ] = ( byte ) (i >>> 16 ); bytes[pos + 2 ] = ( byte ) (i >>> 8 ); bytes[pos + 3 ] = ( byte ) i; top += 4 ; } /** 在指定位置写入一个整型数值,length不变 */ public
void writeInt( int
i, int pos) { if
(bytes.length < pos + 4 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) (i >>> 24 ); bytes[pos + 1 ] = ( byte ) (i >>> 16 ); bytes[pos + 2 ] = ( byte ) (i >>> 8 ); bytes[pos + 3 ] = ( byte ) i; } /** 写入一个浮点数值 */ public
void writeFloat( float
f) { writeInt(Float.floatToIntBits(f)); } /** 写入一个长整型数值 */ public
void writeLong( long
l) { int
pos = top; if
(bytes.length < pos + 8 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) (l >>> 56 ); bytes[pos + 1 ] = ( byte ) (l >>> 48 ); bytes[pos + 2 ] = ( byte ) (l >>> 40 ); bytes[pos + 3 ] = ( byte ) (l >>> 32 ); bytes[pos + 4 ] = ( byte ) (l >>> 24 ); bytes[pos + 5 ] = ( byte ) (l >>> 16 ); bytes[pos + 6 ] = ( byte ) (l >>> 8 ); bytes[pos + 7 ] = ( byte ) l; top += 8 ; } /** 写入一个双浮点数值 */ public
void writeDouble( double
d) { writeLong(Double.doubleToLongBits(d)); } /** 写入动态长度 */ public
void writeLength( int
len) { if
(len >= 0x20000000
|| len < 0 ) throw
new IllegalArgumentException( this + " writeLength, invalid len:"
+ len); if
(len >= 0x4000 ) writeInt(len + 0x20000000 ); else
if (len >= 0x80 ) writeShort(len + 0x4000 ); else writeByte(len + 0x80 ); } /** 写入一个字节数组,可以为null */ public
void writeData( byte [] data) { writeData(data, 0 , (data != null ) ? data.length : 0 ); } /** 写入一个字节数组,可以为null */ public
void writeData( byte [] data, int
pos, int
len) { if
(data == null ) { writeLength( 0 ); return ; } writeLength(len + 1 ); write(data, pos, len); } /** 写入一个字符串,可以为null */ public
void writeString(String s) { if
(s != null ) { byte [] temp = s.getBytes(); if
(temp.length > 65534 ) throw
new IllegalArgumentException(getClass().getName() + " writeString, invalid s:"
+ s); writeShort(temp.length); if
(temp.length != 0 ) write(temp, 0 , temp.length); } else writeShort( 65535 ); } /** 写入一个字符串,以指定的字符进行编码 */ public
void writeUTF(String str, String charsetName) { if
(str == null ) { writeLength( 0 ); return ; } byte [] data; if
(charsetName != null ) { try { data = str.getBytes(charsetName); } catch
(Exception e) { throw
new IllegalArgumentException( this + " writeUTF, invalid charsetName:"
+ charsetName); } } else data = str.getBytes(); writeLength(data.length + 1 ); write(data, 0 , data.length); } /** 写入一个utf字符串,可以为null */ public
void writeUTF(String str) { writeUTF(str, 0 , (str != null ) ? str.length() : 0 ); } /** 写入一个utf字符串中指定的部分,可以为null */ public
void writeUTF(String str, int
index, int
length) { if
(str == null ) { writeLength( 0 ); return ; } int
len = ByteKit.getUTFLength(str, index, length); writeLength(len + 1 ); int
pos = top; if
(bytes.length < pos + len) setCapacity(pos + len); ByteKit.writeUTF(str, index, length, bytes, pos); top += len; } /** 检查是否为相同类型的实例 */ public
boolean checkClass(Object obj) { return
(obj instanceof
ByteBuffer); } /** 在指定位置写入一个字节,length不变 */ public
void writeByte( int
b, int pos) { if
(bytes.length < pos + 1 ) setCapacity(pos + CAPACITY); bytes[pos] = ( byte ) b; } /** 得到字节缓存当前长度的字节数组 */ public
byte [] toByteArray() { byte [] data = new
byte [top - offset]; System.arraycopy(bytes, offset, data, 0 , data.length); return
data; } /** 清除字节缓存对象 */ public
void clear() { top = 0 ; offset = 0 ; } /* common methods */ public
int hashCode() { int
hash = 17 ; for
( int i = top - 1 ; i >= 0 ; i--) hash = 65537
* hash + bytes[i]; return
hash; } public
boolean equals(Object obj) { if
( this == obj) return
true ; if
(!checkClass(obj)) return
false ; ByteBuffer bb = (ByteBuffer) obj; if
(bb.top != top) return
false ; if
(bb.offset != offset) return
false ; for
( int i = top - 1 ; i >= 0 ; i--) { if
(bb.bytes[i] != bytes[i]) return
false ; } return
true ; } public
String toString() { return
super .toString() + "["
+ top + ","
+ offset + ","
+ bytes.length + "] " ; } } |
下面看下 ClientHandle的可读逻辑:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |
public int handleRead() throws
IOException { int
r = this .socket.read( this .reader); if (r <= 0 ) { return
- 1 ; } this .reader.flip(); ByteBuffer data = this .createBuffer(); while (data != null ) { this .reader.get(data.getByteArray(), data.top(), data.capacity()); this .processData(data); data = this .createBuffer(); } this .reader.clear(); return
0 ; } |
依次将数据读入到reader中,并且按照LC(L表示长度,C表示内容)结构将reader中的数据解析成一个个ByteBuffer对象处理。下面是createBuffer函数和processData函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 |
private
ByteBuffer createBuffer() { if (reader.remaining() < 4 ) { return
null ; } int
len = reader.getInt(); if (len > reader.remaining()) { reader.clear(); return
null ; } if
(len > 0
&& len <= 10
* 1024 ) { return
new ByteBuffer(len); } return
null ; } public
void processData(ByteBuffer data) { player.insertData(data); } |
这里要注意,1:解析reader中的消息一定要做容错处理;2:将解析的待处理包放到玩家身上,让玩家自己处理!
发送函数的处理:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 |
public int handleWrite() throws
IOException { ByteBuffer data = writeQueue.poll(); while (data != null ) { this .writer.putInt(data.length()); this .writer.put(data.toByteArray(), 0 , data.length()); data = writeQueue.poll(); } this .writer.flip(); if (! this .writer.hasRemaining()) { this .writer.limit( this .writer.capacity()); return
0 ; } this .socket.write(writer); if ( this .writer.hasRemaining()) { this .writer.compact(); this .writer.position( this .writer.limit()); this .writer.limit( this .writer.capacity()); } else { this .writer.compact(); this .writer.limit( this .writer.capacity()); } return
0 ; } |
发送函数的处理相对复杂些,首先要做的就是每个连接的发送函数每100ms(可以调整)触发一次,每次触发时候,要将待发送的数据包bytebuffer填充到writer缓冲区,然后一次发送!
管理协调这些链接的新建和处理都是使用了java nio的selector结构,具体的代码就不贴出来了,想要的可以联系我,需要注意的有两点,1:对于空闲连接的处理,2:对于发送数据的处理
大致讲完了网络线程,那么讲一讲主逻辑线程,逻辑线程采用线程绑定地图的设计;在服务器启动之时,启动n(可以调整)个地图线程,每个地图线程绑定N(可以调整)个地图,这N个地图上的所有玩家的逻辑处理,都有地图所在线程来处理,具体处理方式:
地图线程的主逻辑:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 |
public class SceneThread implements
Runnable { List<IScene> scenes = new
ArrayList<IScene>(); private
int index = 0 ; @Override public
void run() { while ( true ) { try { synchronized
(scenes) { for (IScene scene : this .scenes) { scene.beatHeart(); } } Thread.sleep( 100 ); } catch
(Exception e) { e.printStackTrace(); } } } public
void addScene(IScene scene) { synchronized
(scenes) { this .scenes.add(scene); } } public
void removeScene(IScene scene) { synchronized
(scenes) { this .scenes.remove(scene); } } public
void setIndex( int
index) { this .index = index; } public
String toString() { return
"SceneThread : " + index; } } |
场景Scene的心跳函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 |
public class Scene implements
IScene { public
void beatHeart() { long
now = System.currentTimeMillis(); List<IPlayer> players = null ; synchronized
(idPlayerMap) { players = new
ArrayList<IPlayer>(idPlayerMap.values()); } for (IPlayer player : players) { player.beatHeart(now); } } } |
玩家的心跳函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |
BlockingQueue<ByteBuffer> dataToProcess = new
LinkedBlockingDeque<ByteBuffer>(); public
void insertData(ByteBuffer data) { this .dataToProcess.offer(data); } public void beatHeart( long
now) { ByteBuffer data = this .dataToProcess.poll(); while (data != null ) { this .processData(data); data = this .dataToProcess.poll(); } //.....处理心跳定时器,上一篇有讲到 } |
好了,大概的服务器的主逻辑就这些了,是不是精简小巧。晚上的时候还做了一下广播压力测试,效果还不错!
欢迎大家提出宝贵意见!