SVM与C++源码实现
时间:2014-05-07 00:48:13
收藏:0
阅读:498
1. 推导出函数间隔最小
2. 约束优化函数变形至如下形式
/* min 1/2*||w||^2 s.t. (w[i]*x[i] + b[i] - y[i]) >= 0; */
3. 对偶函数
/* min(para alpha) 1/2*sum(i)sum(j)(alpha[i]*alpha[j]*y[i]*y[j]*x[i]*x[j]) - sum(alpha[i]) s.t. sum(alpha[i] * y[i]) = 0 C>= alpha[i] >= 0 *
4. 根据KKT条件优化。。
下面是C++代码
/********************************************************* **CopyRight by Weidi Xu, S.C.U.T in Guangdong, Guangzhou** **********************************************************/ #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using std::sort; using std::fabs; const int MAX_DIMENSION = 2; const int MAX_SAMPLES = 3; double x[MAX_SAMPLES][MAX_DIMENSION]; double y[MAX_SAMPLES]; double alpha[MAX_SAMPLES]; double w[MAX_DIMENSION]; double b; double c; double eps = 1e-6; struct _E{ double val; int index; }E[MAX_SAMPLES]; bool cmp(const _E & a, const _E & b) { return a.val < b.val; } int num_dimension; int num_samples; double max(double a,double b) { return a>b?a:b; } double min(double a,double b) { return a>b?b:a; } double kernal(double x1[], double x2[], double dimension) { double ans = 0 ; for(int i = 0 ; i < dimension; i++) { ans += x1[i]*x2[i]; } return ans; } double target_function() { double ans = 0; for(int i = 0 ; i < num_samples; i++) { for(int j = 0 ; j < num_samples; j++) { ans += alpha[i]*alpha[j]*y[i]*y[j]*kernal(x[i],x[j],num_dimension); } } for(int i = 0 ; i < num_samples; i++) { ans -= alpha[i]; } return ans; } double g(double _x[], int dimension) { double ans = b; for(int i = 0 ; i < num_samples; i++) { ans += alpha[i]*y[i]*kernal(x[i],_x,dimension); } return ans; } bool satisfy_constrains(int i, int dimension) { if(alpha[i] == 0) { if(y[i]*g(x[i], dimension) >= 1) return true; else return false; } else if( alpha[i] > 0 && alpha[i] < c) { if(y[i] * g(x[i], dimension) == 1) return true; else return false; } else { if(y[i] * g(x[i], dimension) <= 1) return true; else return false; } } double calE(int i, int dimension) { return g(x[i], dimension) - y[i]; } void calW() { for(int i = 0 ; i < num_dimension; i++) { w[i] = 0; for(int j = 0 ; j < num_samples; j++) { w[i] += alpha[j] * y[j] * x[j][i]; } } return ; } void calB() { double ans = y[0]; for(int i = 0 ; i < num_samples ; i++) { ans -= y[i]*alpha[i]*kernal(x[i], x[0], num_dimension); } b = ans; return; } void recalB(int alpha1index,int alpha2index, int dimension, double alpha1old, double alpha2old) { double alpha1new = alpha[alpha1index]; double alpha2new = alpha[alpha2index]; alpha[alpha1index] = alpha1old; alpha[alpha2index] = alpha2old; double e1 = calE(alpha1index, num_dimension); double e2 = calE(alpha2index, num_dimension); alpha[alpha1index] = alpha1new; alpha[alpha2index] = alpha2new; double b1new = -e1 - y[alpha1index]*kernal(x[alpha1index], x[alpha1index], dimension)*(alpha1new - alpha1old); b1new -= y[alpha2index]*kernal(x[alpha2index], x[alpha1index], dimension)*(alpha2new - alpha2old) + b; double b2new = -e2 - y[alpha1index]*kernal(x[alpha1index], x[alpha2index], dimension)*(alpha1new - alpha1old); b1new -= y[alpha2index]*kernal(x[alpha2index], x[alpha2index], dimension)*(alpha2new - alpha2old) + b; b = (b1new + b2new)/2; } bool optimizehelp(int alpha1index,int alpha2index) { double alpha1new = alpha[alpha1index]; double alpha2new = alpha[alpha2index]; double alpha1old = alpha[alpha1index]; double alpha2old = alpha[alpha2index]; double H,L; if(fabs(y[alpha1index] - y[alpha2index]) > eps) { L = max(0, alpha2old - alpha1old); H = min(c, c + alpha2old - alpha1old); } else { L = max(0, alpha2old + alpha1old - c); H = min(c, alpha2old + alpha1old); } //cal new double lena = kernal(x[alpha1index], x[alpha1index], num_dimension) + kernal(x[alpha2index], x[alpha2index], num_dimension) - 2*kernal(x[alpha1index], x[alpha2index], num_dimension); alpha2new = alpha2old + y[alpha2index]*(calE(alpha1index, num_dimension) - calE(alpha2index, num_dimension))/lena; if(alpha2new > H) { alpha2new = H; } else if( alpha2new < L) { alpha2new = L; } alpha1new = alpha1old + y[alpha1index]*y[alpha2index]*(alpha2old - alpha2new); double energyold = target_function(); alpha[alpha1index] = alpha1new; alpha[alpha2index] = alpha2new; double gap = 0.001; recalB(alpha1index, alpha2index, num_dimension, alpha1old, alpha2old); return true; } bool optimize() { int alpha1index = -1; int alpha2index = -1; double alpha2new = 0; double alpha1new = 0; //cal E[] for(int i = 0 ; i < num_samples; i++) { E[i].val = calE(i, num_dimension); E[i].index = i; } //traverse the alpha1index with 0 < && < c for(int i = 0 ; i < num_samples; i++) { alpha1new = alpha[i]; if(alpha1new > 0 && alpha1new < c) { if(satisfy_constrains(i, num_dimension)) continue; sort(E, E+num_samples, cmp); //simply find the maximum or minimun; if(alpha1new > 0) { if(E[0].index == i) { ; } else { alpha1index = i; alpha2index = E[0].index; if(optimizehelp(alpha1index, alpha2index)) { return true; } } } else { if(E[num_samples-1].index == i) { ; } else { alpha1index = i; alpha2index = E[num_samples-1].index; if(optimizehelp(alpha1index, alpha2index)) { return true; } } } //find the alpha2 > 0 && < c for(int j = 0 ; j < num_samples; j++) { alpha2new = alpha[j]; if(alpha2new > 0 && alpha2new < c) { alpha1index = i; alpha2index = j; if(optimizehelp(alpha1index , alpha2index)) { return true; } } } //find other alpha2 for(int j = 0 ; j < num_samples; j++) { alpha2new = alpha[j]; if(!(alpha2new > 0 && alpha2new < c)) { alpha1index = i; alpha2index = j; if(optimizehelp(alpha1index , alpha2index)) { return true; } } } } } //find all alpha1 for(int i = 0 ; i < num_samples; i++) { alpha1new = alpha[i]; if(!(alpha1new > 0 && alpha1new < c)) { if(satisfy_constrains(i, num_dimension)) continue; sort(E, E+num_samples, cmp); //simply find the maximum or minimun; if(alpha1new > 0) { if(E[0].index == i) { ; } else { alpha1index = i; alpha2index = E[0].index; if(optimizehelp(alpha1index, alpha2index)) { return true; } } } else { if(E[num_samples-1].index == i) { ; } else { alpha1index = i; alpha2index = E[num_samples-1].index; if(optimizehelp(alpha1index, alpha2index)) { return true; } } } //find the alpha2 > 0 && < c for(int j = 0 ; j < num_samples; j++) { alpha2new = alpha[j]; if(alpha2new > 0 && alpha2new < c) { alpha1index = i; alpha2index = j; if(optimizehelp(alpha1index , alpha2index)) { return true; } } } //find other alpha2 for(int j = 0 ; j < num_samples; j++) { alpha2new = alpha[j]; if(!(alpha2new > 0 && alpha2new < c)) { alpha1index = i; alpha2index = j; if(optimizehelp(alpha1index , alpha2index)) { return true; } } } } } //for(int i = 0 ; i < num_samples; i++) //{ // alpha1new = alpha[i]; // for(int j = 0 ; j < num_samples; j++) // { // if(1) // { // alpha1index = i; // alpha2index = j; // if(optimizehelp(alpha1index , alpha2index)) // { // return true; // } // } // } //} return false; } bool check() { double sum = 0; for(int i = 0 ; i < num_samples; i++) { sum += alpha[i] * y[i]; if(!(0 <= alpha[i] && alpha[i] <= c)) { printf("alpha[%d]: %lf wrong\n", i, alpha[i]); return false; } if(!satisfy_constrains(i, num_dimension)) { printf("alpha[%d] not satisfy constrains\n", i); return false; } } if(fabs(sum) > eps) { printf("Sum = %lf\n", sum); return false; } return true; } /* min 1/2*||w||^2 s.t. (w[i]*x[i] + b[i] - y[i]) >= 0; */ /* step 1: cal alpha[] step 2: cal w,b */ /* min(para alpha) 1/2*sum(i)sum(j)(alpha[i]*alpha[j]*y[i]*y[j]*x[i]*x[j]) - sum(alpha[i]) s.t. sum(alpha[i] * y[i]) = 0 C>= alpha[i] >= 0 */ int main() { scanf("%d%d", &num_samples, &num_dimension); for(int i = 0 ; i < num_samples; i++) { for(int j = 0; j < num_dimension; j++) { scanf("%lf",&x[i][j]); } scanf("%lf",&y[i]); } c = 1; //初值附为0; for(int i = 0 ; i < num_samples; i++) { alpha[i] = 0; } int count = 0; while(optimize()){ calB(); count++; } printf("%d ",count); calW(); calB(); printf("y = "); for(int i = 0 ; i < num_dimension; i++) { printf("%lf * x[%d] + ", w[i], i); } printf("%lf\n", b); if(!check()) printf("Not satisfy KKT.\n"); else printf("Satisfy KKT\n"); } /* 3 2 3 3 1 4 3 1 1 1 -1 */
实验结论:
1. SVM的收敛与迭代顺序和初值基本无关。
2. 将不满足kkt条件的alpha值进行修改不一定减少目标函数(未验证,实验的感觉是这样的)。因为加入每次目标函数减少的限制后,不收敛到最优值。
2. 将不满足kkt条件的alpha值进行修改不一定减少目标函数(未验证,实验的感觉是这样的)。因为加入每次目标函数减少的限制后,不收敛到最优值。
评论(0)