Linux内核学习--写一个c程序,并在内核中编译,运行
时间:2014-05-07 02:12:54
收藏:0
阅读:995
20140506
今天开始学习伟大的开源代表作:Linux内核。之前的工作流于几个简单命令的应用,因着对Android操作系统的情愫,“忍不住”跟随陈利君老师的步伐,开启OS内核之旅。学习路径之一是直接从代码入手,下面来写一个hello.c内核模块。
说明:
这个路径/usr/src/linux-headers-2.6.32-22/include/linux是引用的头文件。
内核模块固定格式:module_init()/ module_exit(),module函数是从头文件中来的。
1 #include <linux/module.h> 2 #include <linux/init.h> 3 #include <linux/kernel.h> 4 5 //模块许可 6 MODULE_LICENSE("Dual BSD/GPL"); 7 8 //模块加载 9 static int hello_init(void) 10 { 11 printk(KERN_ALERT "Hi I am here\n"); 12 return 0; 13 } 14 15 //模块卸载 16 static void hello_exit(void) 17 { 18 printk(KERN_ALERT "Goodbye\n"); 19 } 20 21 //注册 22 module_init(hello_init); 23 module_exit(hello_init);
我们知道,linux对于c语言写的程序,使用glibc库函数,并gcc编译-连接-运行;内核中使用make编译,insmod插入模块到内核中,rmmod卸载模块。make命令默认寻找Makefile文件,本质上也是gcc调用。下面创建Makefile文件。
1 obj-m +=hello.o 2 3 #generate the path 4 CURRENT_PATH:= $(shell pwd) 5 6 #the current kernel version number 7 LINUX_KERNEL:=$(shell uname -r) 8 9 #the absolute path 10 LINUX_KERNEL_PATH:=usr/src/linux-headers-$(LINUX_KERNEL) 11 12 #compile object 13 all: 14 make -C $(LINUX_KERNEL_PATH) M=(CURRENT_PATH) modules 15 16 #clean content under current path 17 clean: 18 make -c $(LINUX_KERNEL_PATH) m=(CURRENT_PATH) clean
执行make -> 完成后当前路径出现hello.ko文件 -> insmod hello.ko ->内核结果默认输出到log中,使用dmesg查看,果然有 -> lsmod 命令,发现hello已经成为运行在内核中的一个模块啦 ->rmmod hello 卸载模块 -> dmesg,发现卸载工作留下了log信息->lsmod 找不到hello模块,说明卸载完毕。
接下来学习types.h和list.h两个头文件
types.h
1 #ifndef _LINUX_TYPES_H 2 #define _LINUX_TYPES_H 3 4 #include <asm/types.h> 5 6 #ifndef __ASSEMBLY__ 7 #ifdef __KERNEL__ 8 9 #define DECLARE_BITMAP(name,bits) 10 unsigned long name[BITS_TO_LONGS(bits)] 11 12 #endif 13 14 #include <linux/posix_types.h> 15 16 #ifdef __KERNEL__ 17 18 typedef __u32 __kernel_dev_t; 19 20 typedef __kernel_fd_set fd_set; 21 typedef __kernel_dev_t dev_t; 22 typedef __kernel_ino_t ino_t; 23 typedef __kernel_mode_t mode_t; 24 typedef __kernel_nlink_t nlink_t; 25 typedef __kernel_off_t off_t; 26 typedef __kernel_pid_t pid_t; 27 typedef __kernel_daddr_t daddr_t; 28 typedef __kernel_key_t key_t; 29 typedef __kernel_suseconds_t suseconds_t; 30 typedef __kernel_timer_t timer_t; 31 typedef __kernel_clockid_t clockid_t; 32 typedef __kernel_mqd_t mqd_t; 33 34 typedef _Bool bool; 35 36 typedef __kernel_uid32_t uid_t; 37 typedef __kernel_gid32_t gid_t; 38 typedef __kernel_uid16_t uid16_t; 39 typedef __kernel_gid16_t gid16_t; 40 41 typedef unsigned long uintptr_t; 42 43 #ifdef CONFIG_UID16 44 /* This is defined by include/asm-{arch}/posix_types.h */ 45 typedef __kernel_old_uid_t old_uid_t; 46 typedef __kernel_old_gid_t old_gid_t; 47 #endif /* CONFIG_UID16 */ 48 49 #if defined(__GNUC__) 50 typedef __kernel_loff_t loff_t; 51 #endif 52 53 /* 54 * The following typedefs are also protected by individual ifdefs for 55 * historical reasons: 56 */ 57 #ifndef _SIZE_T 58 #define _SIZE_T 59 typedef __kernel_size_t size_t; 60 #endif 61 62 #ifndef _SSIZE_T 63 #define _SSIZE_T 64 typedef __kernel_ssize_t ssize_t; 65 #endif 66 67 #ifndef _PTRDIFF_T 68 #define _PTRDIFF_T 69 typedef __kernel_ptrdiff_t ptrdiff_t; 70 #endif 71 72 #ifndef _TIME_T 73 #define _TIME_T 74 typedef __kernel_time_t time_t; 75 #endif 76 77 #ifndef _CLOCK_T 78 #define _CLOCK_T 79 typedef __kernel_clock_t clock_t; 80 #endif 81 82 #ifndef _CADDR_T 83 #define _CADDR_T 84 typedef __kernel_caddr_t caddr_t; 85 #endif 86 87 /* bsd */ 88 typedef unsigned char u_char; 89 typedef unsigned short u_short; 90 typedef unsigned int u_int; 91 typedef unsigned long u_long; 92 93 /* sysv */ 94 typedef unsigned char unchar; 95 typedef unsigned short ushort; 96 typedef unsigned int uint; 97 typedef unsigned long ulong; 98 99 #ifndef __BIT_TYPES_DEFINED__ 100 #define __BIT_TYPES_DEFINED__ 101 102 typedef __u8 u_int8_t; 103 typedef __s8 int8_t; 104 typedef __u16 u_int16_t; 105 typedef __s16 int16_t; 106 typedef __u32 u_int32_t; 107 typedef __s32 int32_t; 108 109 #endif /* !(__BIT_TYPES_DEFINED__) */ 110 111 typedef __u8 uint8_t; 112 typedef __u16 uint16_t; 113 typedef __u32 uint32_t; 114 115 #if defined(__GNUC__) 116 typedef __u64 uint64_t; 117 typedef __u64 u_int64_t; 118 typedef __s64 int64_t; 119 #endif 120 121 /* this is a special 64bit data type that is 8-byte aligned */ 122 #define aligned_u64 __u64 __attribute__((aligned(8))) 123 #define aligned_be64 __be64 __attribute__((aligned(8))) 124 #define aligned_le64 __le64 __attribute__((aligned(8))) 125 126 /** 127 * The type used for indexing onto a disc or disc partition. 128 * 129 * Linux always considers sectors to be 512 bytes long independently 130 * of the devices real block size. 131 * 132 * blkcnt_t is the type of the inode‘s block count. 133 */ 134 #ifdef CONFIG_LBDAF 135 typedef u64 sector_t; 136 typedef u64 blkcnt_t; 137 #else 138 typedef unsigned long sector_t; 139 typedef unsigned long blkcnt_t; 140 #endif 141 142 /* 143 * The type of an index into the pagecache. Use a #define so asm/types.h 144 * can override it. 145 */ 146 #ifndef pgoff_t 147 #define pgoff_t unsigned long 148 #endif 149 150 #endif /* __KERNEL__ */ 151 152 /* 153 * Below are truly Linux-specific types that should never collide with 154 * any application/library that wants linux/types.h. 155 */ 156 157 #ifdef __CHECKER__ 158 #define __bitwise__ __attribute__((bitwise)) 159 #else 160 #define __bitwise__ 161 #endif 162 #ifdef __CHECK_ENDIAN__ 163 #define __bitwise __bitwise__ 164 #else 165 #define __bitwise 166 #endif 167 168 typedef __u16 __bitwise __le16; 169 typedef __u16 __bitwise __be16; 170 typedef __u32 __bitwise __le32; 171 typedef __u32 __bitwise __be32; 172 typedef __u64 __bitwise __le64; 173 typedef __u64 __bitwise __be64; 174 175 typedef __u16 __bitwise __sum16; 176 typedef __u32 __bitwise __wsum; 177 178 #ifdef __KERNEL__ 179 typedef unsigned __bitwise__ gfp_t; 180 typedef unsigned __bitwise__ fmode_t; 181 182 #ifdef CONFIG_PHYS_ADDR_T_64BIT 183 typedef u64 phys_addr_t; 184 #else 185 typedef u32 phys_addr_t; 186 #endif 187 188 typedef phys_addr_t resource_size_t; 189 190 typedef struct { 191 volatile int counter; 192 } atomic_t; 193 194 #ifdef CONFIG_64BIT 195 typedef struct { 196 volatile long counter; 197 } atomic64_t; 198 #endif 199 200 struct ustat { 201 __kernel_daddr_t f_tfree; 202 __kernel_ino_t f_tinode; 203 char f_fname[6]; 204 char f_fpack[6]; 205 }; 206 207 #endif /* __KERNEL__ */ 208 #endif /* __ASSEMBLY__ */ 209 #endif /* _LINUX_TYPES_H */
list.h
1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #include <linux/stddef.h> 5 #include <linux/poison.h> 6 #include <linux/prefetch.h> 7 #include <asm/system.h> 8 9 /* 10 * Simple doubly linked list implementation. 11 * 12 * Some of the internal functions ("__xxx") are useful when 13 * manipulating whole lists rather than single entries, as 14 * sometimes we already know the next/prev entries and we can 15 * generate better code by using them directly rather than 16 * using the generic single-entry routines. 17 */ 18 19 struct list_head { 20 struct list_head *next, *prev; 21 }; 22 23 #define LIST_HEAD_INIT(name) { &(name), &(name) } 24 25 #define LIST_HEAD(name) 26 struct list_head name = LIST_HEAD_INIT(name) 27 28 static inline void INIT_LIST_HEAD(struct list_head *list) 29 { 30 list->next = list; 31 list->prev = list; 32 } 33 34 /* 35 * Insert a new entry between two known consecutive entries. 36 * 37 * This is only for internal list manipulation where we know 38 * the prev/next entries already! 39 */ 40 #ifndef CONFIG_DEBUG_LIST 41 static inline void __list_add(struct list_head *new, 42 struct list_head *prev, 43 struct list_head *next) 44 { 45 next->prev = new; 46 new->next = next; 47 new->prev = prev; 48 prev->next = new; 49 } 50 #else 51 extern void __list_add(struct list_head *new, 52 struct list_head *prev, 53 struct list_head *next); 54 #endif 55 56 /** 57 * list_add - add a new entry 58 * @new: new entry to be added 59 * @head: list head to add it after 60 * 61 * Insert a new entry after the specified head. 62 * This is good for implementing stacks. 63 */ 64 static inline void list_add(struct list_head *new, struct list_head *head) 65 { 66 __list_add(new, head, head->next); 67 } 68 69 70 /** 71 * list_add_tail - add a new entry 72 * @new: new entry to be added 73 * @head: list head to add it before 74 * 75 * Insert a new entry before the specified head. 76 * This is useful for implementing queues. 77 */ 78 static inline void list_add_tail(struct list_head *new, struct list_head *head) 79 { 80 __list_add(new, head->prev, head); 81 } 82 83 /* 84 * Delete a list entry by making the prev/next entries 85 * point to each other. 86 * 87 * This is only for internal list manipulation where we know 88 * the prev/next entries already! 89 */ 90 static inline void __list_del(struct list_head * prev, struct list_head * next) 91 { 92 next->prev = prev; 93 prev->next = next; 94 } 95 96 /** 97 * list_del - deletes entry from list. 98 * @entry: the element to delete from the list. 99 * Note: list_empty() on entry does not return true after this, the entry is 100 * in an undefined state. 101 */ 102 #ifndef CONFIG_DEBUG_LIST 103 static inline void list_del(struct list_head *entry) 104 { 105 __list_del(entry->prev, entry->next); 106 entry->next = LIST_POISON1; 107 entry->prev = LIST_POISON2; 108 } 109 #else 110 extern void list_del(struct list_head *entry); 111 #endif 112 113 /** 114 * list_replace - replace old entry by new one 115 * @old : the element to be replaced 116 * @new : the new element to insert 117 * 118 * If @old was empty, it will be overwritten. 119 */ 120 static inline void list_replace(struct list_head *old, 121 struct list_head *new) 122 { 123 new->next = old->next; 124 new->next->prev = new; 125 new->prev = old->prev; 126 new->prev->next = new; 127 } 128 129 static inline void list_replace_init(struct list_head *old, 130 struct list_head *new) 131 { 132 list_replace(old, new); 133 INIT_LIST_HEAD(old); 134 } 135 136 /** 137 * list_del_init - deletes entry from list and reinitialize it. 138 * @entry: the element to delete from the list. 139 */ 140 static inline void list_del_init(struct list_head *entry) 141 { 142 __list_del(entry->prev, entry->next); 143 INIT_LIST_HEAD(entry); 144 } 145 146 /** 147 * list_move - delete from one list and add as another‘s head 148 * @list: the entry to move 149 * @head: the head that will precede our entry 150 */ 151 static inline void list_move(struct list_head *list, struct list_head *head) 152 { 153 __list_del(list->prev, list->next); 154 list_add(list, head); 155 } 156 157 /** 158 * list_move_tail - delete from one list and add as another‘s tail 159 * @list: the entry to move 160 * @head: the head that will follow our entry 161 */ 162 static inline void list_move_tail(struct list_head *list, 163 struct list_head *head) 164 { 165 __list_del(list->prev, list->next); 166 list_add_tail(list, head); 167 } 168 169 /** 170 * list_is_last - tests whether @list is the last entry in list @head 171 * @list: the entry to test 172 * @head: the head of the list 173 */ 174 static inline int list_is_last(const struct list_head *list, 175 const struct list_head *head) 176 { 177 return list->next == head; 178 } 179 180 /** 181 * list_empty - tests whether a list is empty 182 * @head: the list to test. 183 */ 184 static inline int list_empty(const struct list_head *head) 185 { 186 return head->next == head; 187 } 188 189 /** 190 * list_empty_careful - tests whether a list is empty and not being modified 191 * @head: the list to test 192 * 193 * Description: 194 * tests whether a list is empty _and_ checks that no other CPU might be 195 * in the process of modifying either member (next or prev) 196 * 197 * NOTE: using list_empty_careful() without synchronization 198 * can only be safe if the only activity that can happen 199 * to the list entry is list_del_init(). Eg. it cannot be used 200 * if another CPU could re-list_add() it. 201 */ 202 static inline int list_empty_careful(const struct list_head *head) 203 { 204 struct list_head *next = head->next; 205 return (next == head) && (next == head->prev); 206 } 207 208 /** 209 * list_is_singular - tests whether a list has just one entry. 210 * @head: the list to test. 211 */ 212 static inline int list_is_singular(const struct list_head *head) 213 { 214 return !list_empty(head) && (head->next == head->prev); 215 } 216 217 static inline void __list_cut_position(struct list_head *list, 218 struct list_head *head, struct list_head *entry) 219 { 220 struct list_head *new_first = entry->next; 221 list->next = head->next; 222 list->next->prev = list; 223 list->prev = entry; 224 entry->next = list; 225 head->next = new_first; 226 new_first->prev = head; 227 } 228 229 /** 230 * list_cut_position - cut a list into two 231 * @list: a new list to add all removed entries 232 * @head: a list with entries 233 * @entry: an entry within head, could be the head itself 234 * and if so we won‘t cut the list 235 * 236 * This helper moves the initial part of @head, up to and 237 * including @entry, from @head to @list. You should 238 * pass on @entry an element you know is on @head. @list 239 * should be an empty list or a list you do not care about 240 * losing its data. 241 * 242 */ 243 static inline void list_cut_position(struct list_head *list, 244 struct list_head *head, struct list_head *entry) 245 { 246 if (list_empty(head)) 247 return; 248 if (list_is_singular(head) && 249 (head->next != entry && head != entry)) 250 return; 251 if (entry == head) 252 INIT_LIST_HEAD(list); 253 else 254 __list_cut_position(list, head, entry); 255 } 256 257 static inline void __list_splice(const struct list_head *list, 258 struct list_head *prev, 259 struct list_head *next) 260 { 261 struct list_head *first = list->next; 262 struct list_head *last = list->prev; 263 264 first->prev = prev; 265 prev->next = first; 266 267 last->next = next; 268 next->prev = last; 269 } 270 271 /** 272 * list_splice - join two lists, this is designed for stacks 273 * @list: the new list to add. 274 * @head: the place to add it in the first list. 275 */ 276 static inline void list_splice(const struct list_head *list, 277 struct list_head *head) 278 { 279 if (!list_empty(list)) 280 __list_splice(list, head, head->next); 281 } 282 283 /** 284 * list_splice_tail - join two lists, each list being a queue 285 * @list: the new list to add. 286 * @head: the place to add it in the first list. 287 */ 288 static inline void list_splice_tail(struct list_head *list, 289 struct list_head *head) 290 { 291 if (!list_empty(list)) 292 __list_splice(list, head->prev, head); 293 } 294 295 /** 296 * list_splice_init - join two lists and reinitialise the emptied list. 297 * @list: the new list to add. 298 * @head: the place to add it in the first list. 299 * 300 * The list at @list is reinitialised 301 */ 302 static inline void list_splice_init(struct list_head *list, 303 struct list_head *head) 304 { 305 if (!list_empty(list)) { 306 __list_splice(list, head, head->next); 307 INIT_LIST_HEAD(list); 308 } 309 } 310 311 /** 312 * list_splice_tail_init - join two lists and reinitialise the emptied list 313 * @list: the new list to add. 314 * @head: the place to add it in the first list. 315 * 316 * Each of the lists is a queue. 317 * The list at @list is reinitialised 318 */ 319 static inline void list_splice_tail_init(struct list_head *list, 320 struct list_head *head) 321 { 322 if (!list_empty(list)) { 323 __list_splice(list, head->prev, head); 324 INIT_LIST_HEAD(list); 325 } 326 } 327 328 /** 329 * list_entry - get the struct for this entry 330 * @ptr: the &struct list_head pointer. 331 * @type: the type of the struct this is embedded in. 332 * @member: the name of the list_struct within the struct. 333 */ 334 #define list_entry(ptr, type, member) 335 container_of(ptr, type, member) 336 337 /** 338 * list_first_entry - get the first element from a list 339 * @ptr: the list head to take the element from. 340 * @type: the type of the struct this is embedded in. 341 * @member: the name of the list_struct within the struct. 342 * 343 * Note, that list is expected to be not empty. 344 */ 345 #define list_first_entry(ptr, type, member) 346 list_entry((ptr)->next, type, member) 347 348 /** 349 * list_for_each - iterate over a list 350 * @pos: the &struct list_head to use as a loop cursor. 351 * @head: the head for your list. 352 */ 353 #define list_for_each(pos, head) 354 for (pos = (head)->next; prefetch(pos->next), pos != (head); 355 pos = pos->next) 356 357 /** 358 * __list_for_each - iterate over a list 359 * @pos: the &struct list_head to use as a loop cursor. 360 * @head: the head for your list. 361 * 362 * This variant differs from list_for_each() in that it‘s the 363 * simplest possible list iteration code, no prefetching is done. 364 * Use this for code that knows the list to be very short (empty 365 * or 1 entry) most of the time. 366 */ 367 #define __list_for_each(pos, head) 368 for (pos = (head)->next; pos != (head); pos = pos->next) 369 370 /** 371 * list_for_each_prev - iterate over a list backwards 372 * @pos: the &struct list_head to use as a loop cursor. 373 * @head: the head for your list. 374 */ 375 #define list_for_each_prev(pos, head) 376 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); 377 pos = pos->prev) 378 379 /** 380 * list_for_each_safe - iterate over a list safe against removal of list entry 381 * @pos: the &struct list_head to use as a loop cursor. 382 * @n: another &struct list_head to use as temporary storage 383 * @head: the head for your list. 384 */ 385 #define list_for_each_safe(pos, n, head) 386 for (pos = (head)->next, n = pos->next; pos != (head); 387 pos = n, n = pos->next) 388 389 /** 390 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 391 * @pos: the &struct list_head to use as a loop cursor. 392 * @n: another &struct list_head to use as temporary storage 393 * @head: the head for your list. 394 */ 395 #define list_for_each_prev_safe(pos, n, head) 396 for (pos = (head)->prev, n = pos->prev; 397 prefetch(pos->prev), pos != (head); 398 pos = n, n = pos->prev) 399 400 /** 401 * list_for_each_entry - iterate over list of given type 402 * @pos: the type * to use as a loop cursor. 403 * @head: the head for your list. 404 * @member: the name of the list_struct within the struct. 405 */ 406 #define list_for_each_entry(pos, head, member) 407 for (pos = list_entry((head)->next, typeof(*pos), member); 408 prefetch(pos->member.next), &pos->member != (head); 409 pos = list_entry(pos->member.next, typeof(*pos), member)) 410 411 /** 412 * list_for_each_entry_reverse - iterate backwards over list of given type. 413 * @pos: the type * to use as a loop cursor. 414 * @head: the head for your list. 415 * @member: the name of the list_struct within the struct. 416 */ 417 #define list_for_each_entry_reverse(pos, head, member) 418 for (pos = list_entry((head)->prev, typeof(*pos), member); 419 prefetch(pos->member.prev), &pos->member != (head); 420 pos = list_entry(pos->member.prev, typeof(*pos), member)) 421 422 /** 423 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 424 * @pos: the type * to use as a start point 425 * @head: the head of the list 426 * @member: the name of the list_struct within the struct. 427 * 428 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 429 */ 430 #define list_prepare_entry(pos, head, member) 431 ((pos) ? : list_entry(head, typeof(*pos), member)) 432 433 /** 434 * list_for_each_entry_continue - continue iteration over list of given type 435 * @pos: the type * to use as a loop cursor. 436 * @head: the head for your list. 437 * @member: the name of the list_struct within the struct. 438 * 439 * Continue to iterate over list of given type, continuing after 440 * the current position. 441 */ 442 #define list_for_each_entry_continue(pos, head, member) 443 for (pos = list_entry(pos->member.next, typeof(*pos), member); 444 prefetch(pos->member.next), &pos->member != (head); 445 pos = list_entry(pos->member.next, typeof(*pos), member)) 446 447 /** 448 * list_for_each_entry_continue_reverse - iterate backwards from the given point 449 * @pos: the type * to use as a loop cursor. 450 * @head: the head for your list. 451 * @member: the name of the list_struct within the struct. 452 * 453 * Start to iterate over list of given type backwards, continuing after 454 * the current position. 455 */ 456 #define list_for_each_entry_continue_reverse(pos, head, member) 457 for (pos = list_entry(pos->member.prev, typeof(*pos), member); 458 prefetch(pos->member.prev), &pos->member != (head); 459 pos = list_entry(pos->member.prev, typeof(*pos), member)) 460 461 /** 462 * list_for_each_entry_from - iterate over list of given type from the current point 463 * @pos: the type * to use as a loop cursor. 464 * @head: the head for your list. 465 * @member: the name of the list_struct within the struct. 466 * 467 * Iterate over list of given type, continuing from current position. 468 */ 469 #define list_for_each_entry_from(pos, head, member) 470 for (; prefetch(pos->member.next), &pos->member != (head); 471 pos = list_entry(pos->member.next, typeof(*pos), member)) 472 473 /** 474 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 475 * @pos: the type * to use as a loop cursor. 476 * @n: another type * to use as temporary storage 477 * @head: the head for your list. 478 * @member: the name of the list_struct within the struct. 479 */ 480 #define list_for_each_entry_safe(pos, n, head, member) 481 for (pos = list_entry((head)->next, typeof(*pos), member), 482 n = list_entry(pos->member.next, typeof(*pos), member); 483 &pos->member != (head); 484 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 485 486 /** 487 * list_for_each_entry_safe_continue 488 * @pos: the type * to use as a loop cursor. 489 * @n: another type * to use as temporary storage 490 * @head: the head for your list. 491 * @member: the name of the list_struct within the struct. 492 * 493 * Iterate over list of given type, continuing after current point, 494 * safe against removal of list entry. 495 */ 496 #define list_for_each_entry_safe_continue(pos, n, head, member) 497 for (pos = list_entry(pos->member.next, typeof(*pos), member), 498 n = list_entry(pos->member.next, typeof(*pos), member); 499 &pos->member != (head); 500 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 501 502 /** 503 * list_for_each_entry_safe_from 504 * @pos: the type * to use as a loop cursor. 505 * @n: another type * to use as temporary storage 506 * @head: the head for your list. 507 * @member: the name of the list_struct within the struct. 508 * 509 * Iterate over list of given type from current point, safe against 510 * removal of list entry. 511 */ 512 #define list_for_each_entry_safe_from(pos, n, head, member) 513 for (n = list_entry(pos->member.next, typeof(*pos), member); 514 &pos->member != (head); 515 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 516 517 /** 518 * list_for_each_entry_safe_reverse 519 * @pos: the type * to use as a loop cursor. 520 * @n: another type * to use as temporary storage 521 * @head: the head for your list. 522 * @member: the name of the list_struct within the struct. 523 * 524 * Iterate backwards over list of given type, safe against removal 525 * of list entry. 526 */ 527 #define list_for_each_entry_safe_reverse(pos, n, head, member) 528 for (pos = list_entry((head)->prev, typeof(*pos), member), 529 n = list_entry(pos->member.prev, typeof(*pos), member); 530 &pos->member != (head); 531 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 532 533 /* 534 * Double linked lists with a single pointer list head. 535 * Mostly useful for hash tables where the two pointer list head is 536 * too wasteful. 537 * You lose the ability to access the tail in O(1). 538 */ 539 540 struct hlist_head { 541 struct hlist_node *first; 542 }; 543 544 struct hlist_node { 545 struct hlist_node *next, **pprev; 546 }; 547 548 #define HLIST_HEAD_INIT { .first = NULL } 549 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 550 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 551 static inline void INIT_HLIST_NODE(struct hlist_node *h) 552 { 553 h->next = NULL; 554 h->pprev = NULL; 555 } 556 557 static inline int hlist_unhashed(const struct hlist_node *h) 558 { 559 return !h->pprev; 560 } 561 562 static inline int hlist_empty(const struct hlist_head *h) 563 { 564 return !h->first; 565 } 566 567 static inline void __hlist_del(struct hlist_node *n) 568 { 569 struct hlist_node *next = n->next; 570 struct hlist_node **pprev = n->pprev; 571 *pprev = next; 572 if (next) 573 next->pprev = pprev; 574 } 575 576 static inline void hlist_del(struct hlist_node *n) 577 { 578 __hlist_del(n); 579 n->next = LIST_POISON1; 580 n->pprev = LIST_POISON2; 581 } 582 583 static inline void hlist_del_init(struct hlist_node *n) 584 { 585 if (!hlist_unhashed(n)) { 586 __hlist_del(n); 587 INIT_HLIST_NODE(n); 588 } 589 } 590 591 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 592 { 593 struct hlist_node *first = h->first; 594 n->next = first; 595 if (first) 596 first->pprev = &n->next; 597 h->first = n; 598 n->pprev = &h->first; 599 } 600 601 /* next must be != NULL */ 602 static inline void hlist_add_before(struct hlist_node *n, 603 struct hlist_node *next) 604 { 605 n->pprev = next->pprev; 606 n->next = next; 607 next->pprev = &n->next; 608 *(n->pprev) = n; 609 } 610 611 static inline void hlist_add_after(struct hlist_node *n, 612 struct hlist_node *next) 613 { 614 next->next = n->next; 615 n->next = next; 616 next->pprev = &n->next; 617 618 if(next->next) 619 next->next->pprev = &next->next; 620 } 621 622 /* 623 * Move a list from one list head to another. Fixup the pprev 624 * reference of the first entry if it exists. 625 */ 626 static inline void hlist_move_list(struct hlist_head *old, 627 struct hlist_head *new) 628 { 629 new->first = old->first; 630 if (new->first) 631 new->first->pprev = &new->first; 632 old->first = NULL; 633 } 634 635 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 636 637 #define hlist_for_each(pos, head) 638 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); 639 pos = pos->next) 640 641 #define hlist_for_each_safe(pos, n, head) 642 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); 643 pos = n) 644 645 /** 646 * hlist_for_each_entry - iterate over list of given type 647 * @tpos: the type * to use as a loop cursor. 648 * @pos: the &struct hlist_node to use as a loop cursor. 649 * @head: the head for your list. 650 * @member: the name of the hlist_node within the struct. 651 */ 652 #define hlist_for_each_entry(tpos, pos, head, member) 653 for (pos = (head)->first; 654 pos && ({ prefetch(pos->next); 1;}) && 655 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 656 pos = pos->next) 657 658 /** 659 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 660 * @tpos: the type * to use as a loop cursor. 661 * @pos: the &struct hlist_node to use as a loop cursor. 662 * @member: the name of the hlist_node within the struct. 663 */ 664 #define hlist_for_each_entry_continue(tpos, pos, member) 665 for (pos = (pos)->next; 666 pos && ({ prefetch(pos->next); 1;}) && 667 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 668 pos = pos->next) 669 670 /** 671 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 672 * @tpos: the type * to use as a loop cursor. 673 * @pos: the &struct hlist_node to use as a loop cursor. 674 * @member: the name of the hlist_node within the struct. 675 */ 676 #define hlist_for_each_entry_from(tpos, pos, member) 677 for (; pos && ({ prefetch(pos->next); 1;}) && 678 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 679 pos = pos->next) 680 681 /** 682 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 683 * @tpos: the type * to use as a loop cursor. 684 * @pos: the &struct hlist_node to use as a loop cursor. 685 * @n: another &struct hlist_node to use as temporary storage 686 * @head: the head for your list. 687 * @member: the name of the hlist_node within the struct. 688 */ 689 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) 690 for (pos = (head)->first; 691 pos && ({ n = pos->next; 1; }) && 692 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 693 pos = n) 694 695 #endif
需要自备gcc标准手册,posix手册
评论(0)