(二)win7下用Intelij IDEA 远程调试spark standalone 集群
关于这个spark的环境搭建了好久,踩了一堆坑,今天
环境: WIN7笔记本
spark 集群(4个虚拟机搭建的)
Intelij IDEA15
scala-2.10.4
java-1.7.0
版本问题:
个人选择的是hadoop2.6.0 spark1.5.0 scala2.10.4 jdk1.7.0
关于搭建集群环境,见个人的上一篇博客:(一) Spark Standalone集群环境搭建,接下来就是用Intelij IDEA来远程连接spark集群,这样就可以方便的在本机上进行调试。
1)首先在个人WIN7本上搭好java,scala环境,并配置好环境变量,安装好Intelij IDEA,并安装好scala插件。
2)新建Scala项目,选择Scala:
3)分别引入 java 与 Scala SDK,并对项目命名,这里一会我们运行SparkPi的程序,名字可以随意
4)进入主界面,双击src,或者File->Project Structer,进入程序配置界面
5)点击library里“+”,点击java,添加spark-1.5.0-hadoop-2.6.0的jar包
6)点击library里“+”,点击Scala SDK 添加Scala SDK
7)以上步骤点击OK退出,在src新建 SparkPi.scala 的scala object文件
8)写代码之前,先进行一个jar包设置
9) 这里的路径一定要设置好,为jar包的输出路径,一会要写到程序里,使得spark集群的查找
10)选中这里的Build on make,程序就会编译后自动打包
11)注意以上的路径,这个路径就是提交给spark的jar包
.setJars(List("F:\\jar_package\\job\\SparkPi.jar"))
12)复制如下代码到SparkPi.scala
import scala.math.random import org.apache.spark.{SparkConf, SparkContext} /** * Created by Administrator on 2016/5/13. */ //alt+Enter自动引入缺失的包 object SparkPi { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Spark Pi").setMaster("spark://172.21.75.102:7077") .setJars(List("F:\\jar_package\\job\\SparkPi.jar")) val spark = new SparkContext(conf) val slices = if (args.length > 0) args(0).toInt else 2 val n = 100000 * slices val count = spark.parallelize(1 to n, slices).map { i => val x = random * 2 - 1 val y = random * 2 - 1 if (x * x + y * y < 1) 1 else 0 }.reduce(_ + _) println("Pi is roughly " + 4.0 * count / n) spark.stop() } }
13)现在大功告成,设置Run 的Edit Configuration,点击+,Application,设置MainClass,点击OK!
14)点击Run即可运行程序了,程序会在刚才的路径生成对应的jar,然后会启动spark集群,去运行该jar文件,以下为执行结果:
"C:\Program Files\Java\jdk1.7.0_09\bin\java" -Didea.launcher.port=7534 "-Didea.launcher.bin.path=D:\IntelliJ IDEA Community Edition 2016.1.2\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.7.0_09\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\jce.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\jfxrt.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\resources.jar;C:\Program Files\Java\jdk1.7.0_09\jre\lib\rt.jar;F:\IDEA\SparkPi\out\production\SparkPi;C:\Program Files (x86)\scala\lib\scala-actors-migration.jar;C:\Program Files (x86)\scala\lib\scala-actors.jar;C:\Program Files (x86)\scala\lib\scala-library.jar;C:\Program Files (x86)\scala\lib\scala-reflect.jar;C:\Program Files (x86)\scala\lib\scala-swing.jar;F:\jar_package\spark-assembly-1.5.0-hadoop2.6.0.jar;D:\IntelliJ IDEA Community Edition 2016.1.2\lib\idea_rt.jar" com.intellij.rt.execution.application.AppMain SparkPi Using Spark‘s default log4j profile: org/apache/spark/log4j-defaults.properties 16/05/13 17:47:43 INFO SparkContext: Running Spark version 1.5.0 16/05/13 17:47:53 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 16/05/13 17:47:55 INFO SecurityManager: Changing view acls to: Administrator 16/05/13 17:47:55 INFO SecurityManager: Changing modify acls to: Administrator 16/05/13 17:47:55 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(Administrator); users with modify permissions: Set(Administrator) 16/05/13 17:47:58 INFO Slf4jLogger: Slf4jLogger started 16/05/13 17:47:58 INFO Remoting: Starting remoting 16/05/13 17:48:00 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@172.21.75.63:62339] 16/05/13 17:48:00 INFO Utils: Successfully started service ‘sparkDriver‘ on port 62339. 16/05/13 17:48:00 INFO SparkEnv: Registering MapOutputTracker 16/05/13 17:48:00 INFO SparkEnv: Registering BlockManagerMaster 16/05/13 17:48:00 INFO DiskBlockManager: Created local directory at C:\Users\Administrator\AppData\Local\Temp\blockmgr-0046600a-5752-4cd5-89d6-cde41f7011d1 16/05/13 17:48:01 INFO MemoryStore: MemoryStore started with capacity 484.8 MB 16/05/13 17:48:01 INFO HttpFileServer: HTTP File server directory is C:\Users\Administrator\AppData\Local\Temp\spark-4d4d665e-45ad-4ea9-b664-c95eeeb5f8b5\httpd-756f1b24-34a1-48a2-969c-6cc7a5d4cb57 16/05/13 17:48:01 INFO HttpServer: Starting HTTP Server 16/05/13 17:48:01 INFO Utils: Successfully started service ‘HTTP file server‘ on port 62340. 16/05/13 17:48:01 INFO SparkEnv: Registering OutputCommitCoordinator 16/05/13 17:48:02 INFO Utils: Successfully started service ‘SparkUI‘ on port 4040. 16/05/13 17:48:02 INFO SparkUI: Started SparkUI at http://172.21.75.63:4040 16/05/13 17:48:03 INFO SparkContext: Added JAR F:\jar_package\job\SparkPi.jar at http://172.21.75.63:62340/jars/SparkPi.jar with timestamp 1463132883308 16/05/13 17:48:04 WARN MetricsSystem: Using default name DAGScheduler for source because spark.app.id is not set. 16/05/13 17:48:04 INFO AppClient$ClientEndpoint: Connecting to master spark://172.21.75.102:7077... 16/05/13 17:48:06 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20160513024433-0002 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor added: app-20160513024433-0002/0 on worker-20160513012923-172.21.75.102-44267 (172.21.75.102:44267) with 1 cores 16/05/13 17:48:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20160513024433-0002/0 on hostPort 172.21.75.102:44267 with 1 cores, 1024.0 MB RAM 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor added: app-20160513024433-0002/1 on worker-20160513012924-172.21.75.95-54009 (172.21.75.95:54009) with 1 cores 16/05/13 17:48:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20160513024433-0002/1 on hostPort 172.21.75.95:54009 with 1 cores, 1024.0 MB RAM 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor added: app-20160513024433-0002/2 on worker-20160513012924-172.21.75.194-35992 (172.21.75.194:35992) with 1 cores 16/05/13 17:48:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20160513024433-0002/2 on hostPort 172.21.75.194:35992 with 1 cores, 1024.0 MB RAM 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor added: app-20160513024433-0002/3 on worker-20160513012923-172.21.75.122-39901 (172.21.75.122:39901) with 1 cores 16/05/13 17:48:06 INFO SparkDeploySchedulerBackend: Granted executor ID app-20160513024433-0002/3 on hostPort 172.21.75.122:39901 with 1 cores, 1024.0 MB RAM 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/1 is now LOADING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/0 is now LOADING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/2 is now LOADING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/3 is now LOADING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/0 is now RUNNING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/1 is now RUNNING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/2 is now RUNNING 16/05/13 17:48:06 INFO AppClient$ClientEndpoint: Executor updated: app-20160513024433-0002/3 is now RUNNING 16/05/13 17:48:07 INFO Utils: Successfully started service ‘org.apache.spark.network.netty.NettyBlockTransferService‘ on port 62360. 16/05/13 17:48:07 INFO NettyBlockTransferService: Server created on 62360 16/05/13 17:48:07 INFO BlockManagerMaster: Trying to register BlockManager 16/05/13 17:48:07 INFO BlockManagerMasterEndpoint: Registering block manager 172.21.75.63:62360 with 484.8 MB RAM, BlockManagerId(driver, 172.21.75.63, 62360) 16/05/13 17:48:07 INFO BlockManagerMaster: Registered BlockManager 16/05/13 17:48:08 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0 16/05/13 17:48:09 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@172.21.75.194:57560/user/Executor#-786956451]) with ID 2 16/05/13 17:48:10 INFO BlockManagerMasterEndpoint: Registering block manager 172.21.75.194:48333 with 530.3 MB RAM, BlockManagerId(2, 172.21.75.194, 48333) 16/05/13 17:48:10 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@172.21.75.102:60131/user/Executor#1889839276]) with ID 0 16/05/13 17:48:10 INFO BlockManagerMasterEndpoint: Registering block manager 172.21.75.102:33896 with 530.3 MB RAM, BlockManagerId(0, 172.21.75.102, 33896) 16/05/13 17:48:10 INFO SparkContext: Starting job: reduce at SparkPi.scala:19 16/05/13 17:48:10 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:19) with 2 output partitions 16/05/13 17:48:10 INFO DAGScheduler: Final stage: ResultStage 0(reduce at SparkPi.scala:19) 16/05/13 17:48:10 INFO DAGScheduler: Parents of final stage: List() 16/05/13 17:48:10 INFO DAGScheduler: Missing parents: List() 16/05/13 17:48:11 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:15), which has no missing parents 16/05/13 17:48:11 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@172.21.75.95:42263/user/Executor#1076811589]) with ID 1 16/05/13 17:48:11 INFO BlockManagerMasterEndpoint: Registering block manager 172.21.75.95:50679 with 530.3 MB RAM, BlockManagerId(1, 172.21.75.95, 50679) 16/05/13 17:48:12 INFO SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@172.21.75.122:36331/user/Executor#-893021210]) with ID 3 16/05/13 17:48:12 INFO MemoryStore: ensureFreeSpace(1832) called with curMem=0, maxMem=508369305 16/05/13 17:48:12 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1832.0 B, free 484.8 MB) 16/05/13 17:48:12 INFO MemoryStore: ensureFreeSpace(1189) called with curMem=1832, maxMem=508369305 16/05/13 17:48:12 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1189.0 B, free 484.8 MB) 16/05/13 17:48:12 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 172.21.75.63:62360 (size: 1189.0 B, free: 484.8 MB) 16/05/13 17:48:12 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:861 16/05/13 17:48:12 INFO BlockManagerMasterEndpoint: Registering block manager 172.21.75.122:59662 with 530.3 MB RAM, BlockManagerId(3, 172.21.75.122, 59662) 16/05/13 17:48:12 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:15) 16/05/13 17:48:12 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks 16/05/13 17:48:13 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 172.21.75.194, PROCESS_LOCAL, 2137 bytes) 16/05/13 17:48:13 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 172.21.75.102, PROCESS_LOCAL, 2194 bytes) 16/05/13 17:49:21 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 172.21.75.102:33896 (size: 1189.0 B, free: 530.3 MB) 16/05/13 17:49:22 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 68937 ms on 172.21.75.102 (1/2) 16/05/13 17:49:42 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 172.21.75.194:48333 (size: 1189.0 B, free: 530.3 MB) 16/05/13 17:49:42 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 90038 ms on 172.21.75.194 (2/2) 16/05/13 17:49:42 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:19) finished in 90.071 s 16/05/13 17:49:42 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 16/05/13 17:49:42 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:19, took 92.205022 s Pi is roughly 3.13816 16/05/13 17:49:42 INFO SparkUI: Stopped Spark web UI at http://172.21.75.63:4040 16/05/13 17:49:42 INFO DAGScheduler: Stopping DAGScheduler 16/05/13 17:49:42 INFO SparkDeploySchedulerBackend: Shutting down all executors 16/05/13 17:49:42 INFO SparkDeploySchedulerBackend: Asking each executor to shut down 16/05/13 17:49:43 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 16/05/13 17:49:43 INFO MemoryStore: MemoryStore cleared 16/05/13 17:49:43 INFO BlockManager: BlockManager stopped 16/05/13 17:49:43 INFO BlockManagerMaster: BlockManagerMaster stopped 16/05/13 17:49:43 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 16/05/13 17:49:43 INFO SparkContext: Successfully stopped SparkContext 16/05/13 17:49:43 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon. 16/05/13 17:49:43 INFO ShutdownHookManager: Shutdown hook called 16/05/13 17:49:43 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports. 16/05/13 17:49:43 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-4d4d665e-45ad-4ea9-b664-c95eeeb5f8b5 Process finished with exit code 0
看着真是有点小激动!
15)去172.21.75.102:8080查看运行的痕迹
16)搭建调试环境过程中的错误
null\bin\winutils.exe,这个错误很简单,是因为本win7压根就没装hadoop系统,解决办法是从集群上复制一份过来,放到F盘,并且配置好环境变量
HADOOP_HOME=F:\hadoop-2.6.0 Path=%HADOOP_HOME%\bin
接下来下载对应的版本的winutils放到 F:\hadoop-2.6.0\bin 文件夹下,应该就解决了
SparkUncaughtExceptionHandler: Uncaught exception in thread Thread
这个错误好坑,查了好久的资料,才解决,原来是搭建集群时候spark-env.sh设置的问题
将SPARK_MASTER_IP=spark1改成
SPARK_MASTER_IP=172.21.75.102即可解决