989

时间:2014-05-04 19:47:13   收藏:0   阅读:587

$\bf命题2:$任意方阵$A$均可分解为可逆阵$B$与对称阵$C$之积

证明:设$r\left( A \right) = r$,则存在可逆阵$P,Q$,使得
\[A = P\left( {\begin{array}{*{20}{c}}
{{E_r}}&0\\
0&0
\end{array}} \right)Q\]
从而可知
\begin{align*}
A &= P\left( {\begin{array}{*{20}{c}}
{{E_r}}&0\\
0&0
\end{array}} \right)Q\\&
= P{{Q‘}^{ - 1}}Q‘\left( {\begin{array}{*{20}{c}}
{{E_r}}&0\\
0&0
\end{array}} \right)Q
\end{align*}
取$B = P{{Q‘}^{ - 1}}$,$C = Q‘\left( {\begin{array}{*{20}{c}}
{{E_r}}&0\\
0&0
\end{array}} \right)Q$,即证

989,布布扣,bubuko.com

评论(0
© 2014 mamicode.com 版权所有 京ICP备13008772号-2  联系我们:gaon5@hotmail.com
迷上了代码!